Mapping dict for path query and body

This commit is contained in:
2025-02-13 20:11:53 +00:00
parent 98c1486f56
commit 6b541eb162
4 changed files with 86 additions and 106 deletions

View File

@@ -119,28 +119,34 @@ class OperationParser:
) -> type[BaseModel]:
"""Create unified input model for all parameters."""
fields: dict[str, tuple[type, Any]] = {}
parameter_mapping = {"path": [], "query": [], "body": []}
# Add path parameters
for name, schema in parameters.get("path", {}).items():
field_type = schema["type"]
required = schema.get("required", True) # Path parameters are required by default
fields[f"path_{name}"] = (field_type, ... if required else None)
fields[name] = (field_type, ... if required else None)
parameter_mapping["path"].append(name)
# Add query parameters
for name, schema in parameters.get("query", {}).items():
field_type = schema["type"]
required = schema.get("required", False) # Query parameters are optional by default
fields[f"query_{name}"] = (field_type, ... if required else None)
fields[name] = (field_type, ... if required else None)
parameter_mapping["query"].append(name)
# Add body fields if present
if body_schema and body_schema.get("type") == "object":
for prop_name, prop_schema in body_schema.get("properties", {}).items():
field_type = self._map_type(prop_schema.get("type", "string"))
required = prop_name in body_schema.get("required", [])
fields[f"body_{prop_name}"] = (field_type, ... if required else None)
fields[prop_name] = (field_type, ... if required else None)
parameter_mapping["body"].append(prop_name)
logger.debug("Creating input model for %s with fields: %s", operation_id, fields)
return create_model(f"{operation_id}_input", **fields)
model = create_model(f"{operation_id}_input", **fields)
model.model_config["parameter_mapping"] = parameter_mapping
return model
def extract_parameters(self, operation: dict[str, Any]) -> dict[str, Any]:
"""Extract and categorize operation parameters.

View File

@@ -21,13 +21,18 @@ async def serve() -> None:
@server.list_tools()
async def list_tools() -> list[Tool]:
return get_airflow_tools()
try:
return await get_airflow_tools()
except Exception as e:
logger.error("Failed to list tools: %s", e)
raise
@server.call_tool()
async def call_tool(name: str, arguments: dict[str, Any]) -> list[TextContent]:
try:
tool = get_tool(name)
result = await tool.run(**arguments)
tool = await get_tool(name)
async with tool.client:
result = await tool.run(body=arguments)
return [TextContent(type="text", text=str(result))]
except Exception as e:
logger.error("Tool execution failed: %s", e)

View File

@@ -49,82 +49,23 @@ class AirflowTool(BaseTools):
self.operation = operation_details
self.client = client
def _validate_input(
self,
path_params: dict[str, Any] | None = None,
query_params: dict[str, Any] | None = None,
body: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Validate input parameters using unified input model.
Args:
path_params: Path parameters
query_params: Query parameters
body: Body parameters
Returns:
dict[str, Any]: Validated input parameters
"""
try:
input_data = {}
if path_params:
input_data.update({f"path_{k}": v for k, v in path_params.items()})
if query_params:
input_data.update({f"query_{k}": v for k, v in query_params.items()})
if body:
input_data.update({f"body_{k}": v for k, v in body.items()})
validated = self.operation.input_model(**input_data)
return validated.model_dump()
except ValidationError as e:
logger.error("Input validation failed: %s", e)
raise
def _extract_parameters(self, validated_input: dict[str, Any]) -> tuple[dict[str, Any], dict[str, Any], dict[str, Any]]:
"""Extract validated parameters by type."""
path_params = {}
query_params = {}
body = {}
# Extract parameters based on operation definition
for key, value in validated_input.items():
# Remove prefix from key if present
param_key = key
if key.startswith(("path_", "query_", "body_")):
param_key = key.split("_", 1)[1]
if key.startswith("path_"):
path_params[param_key] = value
elif key.startswith("query_"):
query_params[param_key] = value
elif key.startswith("body_"):
body[param_key] = value
else:
body[key] = value
return path_params, query_params, body
async def run(
self,
path_params: dict[str, Any] | None = None,
query_params: dict[str, Any] | None = None,
body: dict[str, Any] | None = None,
) -> Any:
"""Execute the operation with provided parameters."""
try:
validated_input = self._validate_input(path_params, query_params, body)
path_params, query_params, body = self._extract_parameters(validated_input)
mapping = self.operation.input_model.model_config["parameter_mapping"]
path_params = {k: body[k] for k in mapping.get("path", []) if k in body}
query_params = {k: body[k] for k in mapping.get("query", []) if k in body}
body_params = {k: body[k] for k in mapping.get("body", []) if k in body}
# Execute operation
response = await self.client.execute(
operation_id=self.operation.operation_id,
path_params=path_params,
query_params=query_params,
body=body,
body=body_params,
)
# Validate response if model exists

View File

@@ -10,55 +10,80 @@ from airflow_mcp_server.tools.airflow_tool import AirflowTool
logger = logging.getLogger(__name__)
_tools_cache: dict[str, AirflowTool] = {}
_client: AirflowClient | None = None
def get_airflow_tools() -> list[Tool]:
def _initialize_client() -> AirflowClient:
"""Initialize Airflow client with environment variables.
Returns:
AirflowClient instance
Raises:
ValueError: If required environment variables are missing
"""
required_vars = ["OPENAPI_SPEC", "AIRFLOW_BASE_URL", "AUTH_TOKEN"]
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(f"Missing required environment variables: {missing_vars}")
return AirflowClient(spec_path=os.environ["OPENAPI_SPEC"], base_url=os.environ["AIRFLOW_BASE_URL"], auth_token=os.environ["AUTH_TOKEN"])
async def _initialize_tools() -> None:
"""Initialize tools cache with Airflow operations.
Raises:
ValueError: If initialization fails
"""
global _tools_cache
try:
client = _initialize_client()
parser = OperationParser(os.environ["OPENAPI_SPEC"])
# Generate tools for each operation
for operation_id in parser.get_operations():
operation_details = parser.parse_operation(operation_id)
tool = AirflowTool(operation_details, client)
_tools_cache[operation_id] = tool
except Exception as e:
logger.error("Failed to initialize tools: %s", e)
_tools_cache.clear()
raise ValueError(f"Failed to initialize tools: {e}") from e
async def get_airflow_tools() -> list[Tool]:
"""Get list of all available Airflow tools.
Returns:
List of MCP Tool objects representing available operations
Raises:
ValueError: If required environment variables are missing
ValueError: If required environment variables are missing or initialization fails
"""
global _tools_cache, _client
if not _tools_cache:
required_vars = ["OPENAPI_SPEC", "AIRFLOW_BASE_URL", "AUTH_TOKEN"]
if not all(var in os.environ for var in required_vars):
raise ValueError(f"Missing required environment variables: {required_vars}")
# Initialize client if not exists
if not _client:
_client = AirflowClient(spec_path=os.environ["OPENAPI_SPEC"], base_url=os.environ["AIRFLOW_BASE_URL"], auth_token=os.environ["AUTH_TOKEN"])
await _initialize_tools()
tools = []
for operation_id, tool in _tools_cache.items():
try:
# Create parser
parser = OperationParser(os.environ["OPENAPI_SPEC"])
# Generate tools for each operation
for operation_id in parser.get_operations():
operation_details = parser.parse_operation(operation_id)
tool = AirflowTool(operation_details, _client)
_tools_cache[operation_id] = tool
except Exception as e:
logger.error("Failed to initialize tools: %s", e)
raise
# Convert to MCP Tool format
return [
schema = tool.operation.input_model.model_json_schema()
tools.append(
Tool(
name=operation_id,
description=tool.operation.operation_id,
inputSchema=tool.operation.input_model.model_json_schema(),
inputSchema=schema,
)
for operation_id, tool in _tools_cache.items()
]
)
except Exception as e:
logger.error("Failed to create tool schema for %s: %s", operation_id, e)
continue
return tools
def get_tool(name: str) -> AirflowTool:
async def get_tool(name: str) -> AirflowTool:
"""Get specific tool by name.
Args:
@@ -69,9 +94,12 @@ def get_tool(name: str) -> AirflowTool:
Raises:
KeyError: If tool not found
ValueError: If tool initialization fails
"""
if not _tools_cache:
await _initialize_tools()
if name not in _tools_cache:
# Ensure cache is populated
get_airflow_tools()
raise KeyError(f"Tool {name} not found")
return _tools_cache[name]