Combined pydantic model with parameters and request body

This commit is contained in:
2025-02-13 16:38:18 +00:00
parent 8f3f5048a0
commit 98c1486f56
7 changed files with 134 additions and 163 deletions

View File

@@ -18,7 +18,7 @@ class OperationDetails:
path: str
method: str
parameters: dict[str, Any]
request_body: type[BaseModel] | None = None
input_model: type[BaseModel]
response_model: type[BaseModel] | None = None
@@ -35,7 +35,6 @@ class OperationParser:
ValueError: If spec_path is invalid or spec cannot be loaded
"""
try:
# Load and parse OpenAPI spec
if isinstance(spec_path, bytes):
self.raw_spec = yaml.safe_load(spec_path)
elif isinstance(spec_path, dict):
@@ -48,7 +47,6 @@ class OperationParser:
else:
raise ValueError(f"Invalid spec_path type: {type(spec_path)}. Expected Path, str, dict, bytes or file-like object")
# Initialize OpenAPI spec
spec = OpenAPI.from_dict(self.raw_spec)
self.spec = spec
self._paths = self.raw_spec["paths"]
@@ -72,7 +70,6 @@ class OperationParser:
ValueError: If operation not found or invalid
"""
try:
# Find operation in spec
for path, path_item in self._paths.items():
for method, operation in path_item.items():
if method.startswith("x-") or method == "parameters":
@@ -81,21 +78,30 @@ class OperationParser:
if operation.get("operationId") == operation_id:
logger.debug("Found operation %s at %s %s", operation_id, method, path)
# Add path to operation for parameter context
operation["path"] = path
operation["path_item"] = path_item
# Extract operation details
parameters = self.extract_parameters(operation)
request_body = self._parse_request_body(operation)
response_model = self._parse_response_model(operation)
# Get request body schema if present
body_schema = None
if "requestBody" in operation:
content = operation["requestBody"].get("content", {})
if "application/json" in content:
body_schema = content["application/json"].get("schema", {})
if "$ref" in body_schema:
body_schema = self._resolve_ref(body_schema["$ref"])
# Create unified input model
input_model = self._create_input_model(operation_id, parameters, body_schema)
return OperationDetails(
operation_id=operation_id,
path=str(path),
method=method,
parameters=parameters,
request_body=request_body,
input_model=input_model,
response_model=response_model,
)
@@ -105,6 +111,37 @@ class OperationParser:
logger.error("Error parsing operation %s: %s", operation_id, e)
raise
def _create_input_model(
self,
operation_id: str,
parameters: dict[str, Any],
body_schema: dict[str, Any] | None = None,
) -> type[BaseModel]:
"""Create unified input model for all parameters."""
fields: dict[str, tuple[type, Any]] = {}
# Add path parameters
for name, schema in parameters.get("path", {}).items():
field_type = schema["type"]
required = schema.get("required", True) # Path parameters are required by default
fields[f"path_{name}"] = (field_type, ... if required else None)
# Add query parameters
for name, schema in parameters.get("query", {}).items():
field_type = schema["type"]
required = schema.get("required", False) # Query parameters are optional by default
fields[f"query_{name}"] = (field_type, ... if required else None)
# Add body fields if present
if body_schema and body_schema.get("type") == "object":
for prop_name, prop_schema in body_schema.get("properties", {}).items():
field_type = self._map_type(prop_schema.get("type", "string"))
required = prop_name in body_schema.get("required", [])
fields[f"body_{prop_name}"] = (field_type, ... if required else None)
logger.debug("Creating input model for %s with fields: %s", operation_id, fields)
return create_model(f"{operation_id}_input", **fields)
def extract_parameters(self, operation: dict[str, Any]) -> dict[str, Any]:
"""Extract and categorize operation parameters.
@@ -120,12 +157,10 @@ class OperationParser:
"header": {},
}
# Handle path-level parameters
path_item = operation.get("path_item", {})
if path_item and "parameters" in path_item:
self._process_parameters(path_item["parameters"], parameters)
# Handle operation-level parameters
self._process_parameters(operation.get("parameters", []), parameters)
return parameters
@@ -138,11 +173,9 @@ class OperationParser:
target: Target dictionary to store processed parameters
"""
for param in params:
# Resolve parameter reference if needed
if "$ref" in param:
param = self._resolve_ref(param["$ref"])
# Validate parameter structure
if not isinstance(param, dict) or "in" not in param:
logger.warning("Invalid parameter format: %s", param)
continue
@@ -165,7 +198,7 @@ class OperationParser:
parts = ref.split("/")
current = self.raw_spec
for part in parts[1:]: # Skip first '#'
for part in parts[1:]:
current = current[part]
self._schema_cache[ref] = current
@@ -192,14 +225,7 @@ class OperationParser:
}
def _map_type(self, openapi_type: str) -> type:
"""Map OpenAPI type to Python type.
Args:
openapi_type: OpenAPI type string
Returns:
Corresponding Python type
"""
"""Map OpenAPI type to Python type."""
type_map = {
"string": str,
"integer": int,
@@ -210,28 +236,6 @@ class OperationParser:
}
return type_map.get(openapi_type, Any)
def _parse_request_body(self, operation: dict[str, Any]) -> type[BaseModel] | None:
"""Parse request body schema into Pydantic model.
Args:
operation: Operation object from OpenAPI spec
Returns:
Pydantic model for request body or None
"""
if "requestBody" not in operation:
return None
content = operation["requestBody"].get("content", {})
if "application/json" not in content:
return None
schema = content["application/json"].get("schema", {})
if "$ref" in schema:
schema = self._resolve_ref(schema["$ref"])
return self._create_model("RequestBody", schema)
def _parse_response_model(self, operation: dict[str, Any]) -> type[BaseModel] | None:
"""Parse response schema into Pydantic model.
@@ -259,23 +263,6 @@ class OperationParser:
return self._create_model("Response", schema)
def get_operations(self) -> list[str]:
"""Get list of all operation IDs from spec.
Returns:
List of operation IDs
"""
operations = []
for path in self._paths.values():
for method, operation in path.items():
if method.startswith("x-") or method == "parameters":
continue
if "operationId" in operation:
operations.append(operation["operationId"])
return operations
def _create_model(self, name: str, schema: dict[str, Any]) -> type[BaseModel]:
"""Create Pydantic model from schema.
@@ -292,21 +279,18 @@ class OperationParser:
if "$ref" in schema:
schema = self._resolve_ref(schema["$ref"])
if schema.get("type") != "object":
if schema.get("type", "object") != "object":
raise ValueError("Schema must be an object type")
fields = {}
for prop_name, prop_schema in schema.get("properties", {}).items():
# Resolve property schema reference if needed
if "$ref" in prop_schema:
prop_schema = self._resolve_ref(prop_schema["$ref"])
if prop_schema.get("type") == "object":
# Create nested model
nested_model = self._create_model(f"{name}_{prop_name}", prop_schema)
field_type = nested_model
elif prop_schema.get("type") == "array":
# Handle array types
items = prop_schema.get("items", {})
if "$ref" in items:
items = self._resolve_ref(items["$ref"])
@@ -328,3 +312,16 @@ class OperationParser:
except Exception as e:
logger.error("Error creating model %s: %s", name, e)
raise ValueError(f"Failed to create model {name}: {e}")
def get_operations(self) -> list[str]:
"""Get list of all operation IDs from spec."""
operations = []
for path in self._paths.values():
for method, operation in path.items():
if method.startswith("x-") or method == "parameters":
continue
if "operationId" in operation:
operations.append(operation["operationId"])
return operations

View File

@@ -35,4 +35,4 @@ async def serve() -> None:
options = server.create_initialization_options()
async with stdio_server() as (read_stream, write_stream):
server.run(read_stream, write_stream, options, raise_exceptions=True)
await server.run(read_stream, write_stream, options, raise_exceptions=True)

View File

@@ -1,10 +1,11 @@
import logging
from typing import Any
from pydantic import BaseModel, ValidationError
from airflow_mcp_server.client.airflow_client import AirflowClient
from airflow_mcp_server.parser.operation_parser import OperationDetails
from airflow_mcp_server.tools.base_tools import BaseTools
from pydantic import BaseModel, ValidationError
logger = logging.getLogger(__name__)
@@ -48,108 +49,82 @@ class AirflowTool(BaseTools):
self.operation = operation_details
self.client = client
def _validate_parameters(
def _validate_input(
self,
path_params: dict[str, Any] | None = None,
query_params: dict[str, Any] | None = None,
body: dict[str, Any] | None = None,
) -> tuple[dict[str, Any] | None, dict[str, Any] | None, dict[str, Any] | None]:
"""Validate input parameters against operation schemas.
) -> dict[str, Any]:
"""Validate input parameters using unified input model.
Args:
path_params: URL path parameters
query_params: URL query parameters
body: Request body data
path_params: Path parameters
query_params: Query parameters
body: Body parameters
Returns:
Tuple of validated (path_params, query_params, body)
Raises:
ValidationError: If parameters fail validation
dict[str, Any]: Validated input parameters
"""
validated_params: dict[str, dict[str, Any] | None] = {
"path": None,
"query": None,
"body": None,
}
try:
# Validate path parameters
if path_params and "path" in self.operation.parameters:
path_schema = self.operation.parameters["path"]
for name, value in path_params.items():
if name in path_schema:
param_type = path_schema[name]["type"]
if not isinstance(value, param_type):
raise create_validation_error(
field=name,
message=f"Path parameter {name} must be of type {param_type.__name__}",
)
validated_params["path"] = path_params
input_data = {}
# Validate query parameters
if query_params and "query" in self.operation.parameters:
query_schema = self.operation.parameters["query"]
for name, value in query_params.items():
if name in query_schema:
param_type = query_schema[name]["type"]
if not isinstance(value, param_type):
raise create_validation_error(
field=name,
message=f"Query parameter {name} must be of type {param_type.__name__}",
)
validated_params["query"] = query_params
if path_params:
input_data.update({f"path_{k}": v for k, v in path_params.items()})
# Validate request body
if body and self.operation.request_body:
try:
model: type[BaseModel] = self.operation.request_body
validated_body = model(**body)
validated_params["body"] = validated_body.model_dump()
except ValidationError as e:
# Re-raise Pydantic validation errors directly
raise e
if query_params:
input_data.update({f"query_{k}": v for k, v in query_params.items()})
return (
validated_params["path"],
validated_params["query"],
validated_params["body"],
)
if body:
input_data.update({f"body_{k}": v for k, v in body.items()})
except Exception as e:
logger.error("Parameter validation failed: %s", e)
validated = self.operation.input_model(**input_data)
return validated.model_dump()
except ValidationError as e:
logger.error("Input validation failed: %s", e)
raise
def _extract_parameters(self, validated_input: dict[str, Any]) -> tuple[dict[str, Any], dict[str, Any], dict[str, Any]]:
"""Extract validated parameters by type."""
path_params = {}
query_params = {}
body = {}
# Extract parameters based on operation definition
for key, value in validated_input.items():
# Remove prefix from key if present
param_key = key
if key.startswith(("path_", "query_", "body_")):
param_key = key.split("_", 1)[1]
if key.startswith("path_"):
path_params[param_key] = value
elif key.startswith("query_"):
query_params[param_key] = value
elif key.startswith("body_"):
body[param_key] = value
else:
body[key] = value
return path_params, query_params, body
async def run(
self,
path_params: dict[str, Any] | None = None,
query_params: dict[str, Any] | None = None,
body: dict[str, Any] | None = None,
) -> Any:
"""Execute the operation with provided parameters.
Args:
path_params: URL path parameters
query_params: URL query parameters
body: Request body data
Returns:
API response data
Raises:
ValidationError: If parameters fail validation
RuntimeError: If client execution fails
"""
"""Execute the operation with provided parameters."""
try:
# Validate parameters
validated_path_params, validated_query_params, validated_body = self._validate_parameters(path_params, query_params, body)
validated_input = self._validate_input(path_params, query_params, body)
path_params, query_params, body = self._extract_parameters(validated_input)
# Execute operation
response = await self.client.execute(
operation_id=self.operation.operation_id,
path_params=validated_path_params,
query_params=validated_query_params,
body=validated_body,
path_params=path_params,
query_params=query_params,
body=body,
)
# Validate response if model exists

View File

@@ -52,7 +52,7 @@ def get_airflow_tools() -> list[Tool]:
Tool(
name=operation_id,
description=tool.operation.operation_id,
inputSchema=tool.operation.request_body.model_json_schema() if tool.operation.request_body else None,
inputSchema=tool.operation.input_model.model_json_schema(),
)
for operation_id, tool in _tools_cache.items()
]

View File

@@ -39,33 +39,32 @@ def test_parse_operation_with_path_params(parser: OperationParser) -> None:
operation = parser.parse_operation("get_dag")
assert operation.path == "/dags/{dag_id}"
assert "dag_id" in operation.parameters["path"]
param = operation.parameters["path"]["dag_id"]
assert isinstance(param["type"], type(str))
assert param["required"] is True
assert isinstance(operation.input_model, type(BaseModel))
# Verify path parameter field exists
fields = operation.input_model.__annotations__
assert "path_dag_id" in fields
assert isinstance(fields["path_dag_id"], type(str))
def test_parse_operation_with_query_params(parser: OperationParser) -> None:
"""Test parsing operation with query parameters."""
operation = parser.parse_operation("get_dags")
assert "limit" in operation.parameters["query"]
param = operation.parameters["query"]["limit"]
assert isinstance(param["type"], type(int))
assert param["required"] is False
# Verify query parameter field exists
fields = operation.input_model.__annotations__
assert "query_limit" in fields
assert isinstance(fields["query_limit"], type(int))
def test_parse_operation_with_request_body(parser: OperationParser) -> None:
def test_parse_operation_with_body_params(parser: OperationParser) -> None:
"""Test parsing operation with request body."""
operation = parser.parse_operation("post_dag_run")
assert operation.request_body is not None
assert issubclass(operation.request_body, BaseModel)
# Test model fields
fields = operation.request_body.__annotations__
assert "dag_run_id" in fields
assert isinstance(fields["dag_run_id"], type(str))
# Verify body fields exist
fields = operation.input_model.__annotations__
assert "body_dag_run_id" in fields
assert isinstance(fields["body_dag_run_id"], type(str))
def test_parse_operation_with_response_model(parser: OperationParser) -> None:
@@ -140,9 +139,7 @@ def test_create_model_nested_objects(parser: OperationParser) -> None:
assert issubclass(model, BaseModel)
fields = model.__annotations__
assert "nested" in fields
# Check that nested field is a Pydantic model
assert issubclass(fields["nested"], BaseModel)
# Verify nested model structure
nested_fields = fields["nested"].__annotations__
assert "field" in nested_fields
assert isinstance(nested_fields["field"], type(str))

View File

@@ -32,7 +32,7 @@ def operation_details():
"filter": {"type": str, "required": False},
},
},
request_body=TestRequestModel,
input_model=TestRequestModel,
response_model=TestResponseModel,
)

View File

@@ -6,8 +6,10 @@ from pydantic import BaseModel
class TestRequestModel(BaseModel):
"""Test request model."""
name: str
value: int
path_id: int
query_filter: str | None = None
body_name: str
body_value: int
class TestResponseModel(BaseModel):