refactor for dynamic Models
This commit is contained in:
@@ -259,6 +259,23 @@ class OperationParser:
|
|||||||
|
|
||||||
return self._create_model("Response", schema)
|
return self._create_model("Response", schema)
|
||||||
|
|
||||||
|
def get_operations(self) -> list[str]:
|
||||||
|
"""Get list of all operation IDs from spec.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of operation IDs
|
||||||
|
"""
|
||||||
|
operations = []
|
||||||
|
|
||||||
|
for path in self._paths.values():
|
||||||
|
for method, operation in path.items():
|
||||||
|
if method.startswith("x-") or method == "parameters":
|
||||||
|
continue
|
||||||
|
if "operationId" in operation:
|
||||||
|
operations.append(operation["operationId"])
|
||||||
|
|
||||||
|
return operations
|
||||||
|
|
||||||
def _create_model(self, name: str, schema: dict[str, Any]) -> type[BaseModel]:
|
def _create_model(self, name: str, schema: dict[str, Any]) -> type[BaseModel]:
|
||||||
"""Create Pydantic model from schema.
|
"""Create Pydantic model from schema.
|
||||||
|
|
||||||
|
|||||||
@@ -1,61 +1,37 @@
|
|||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
from enum import Enum
|
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
from mcp.server import Server
|
from mcp.server import Server
|
||||||
from mcp.server.stdio import stdio_server
|
from mcp.server.stdio import stdio_server
|
||||||
from mcp.types import TextContent, Tool
|
from mcp.types import TextContent, Tool
|
||||||
|
|
||||||
from airflow_mcp_server.tools.models import ListDags
|
from airflow_mcp_server.tools.tool_manager import get_airflow_tools, get_tool
|
||||||
from airflow_mcp_server.tools.tool_manager import get_airflow_dag_tools
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
class AirflowAPITools(str, Enum):
|
|
||||||
# DAG Operations
|
|
||||||
LIST_DAGS = "list_dags"
|
|
||||||
|
|
||||||
|
|
||||||
async def process_instruction(instruction: dict[str, Any]) -> dict[str, Any]:
|
|
||||||
dag_tools = get_airflow_dag_tools()
|
|
||||||
|
|
||||||
try:
|
|
||||||
match instruction["type"]:
|
|
||||||
case "list_dags":
|
|
||||||
return {"dags": await dag_tools.list_dags()}
|
|
||||||
case _:
|
|
||||||
return {"message": "Invalid instruction type"}
|
|
||||||
except Exception as e:
|
|
||||||
return {"error": str(e)}
|
|
||||||
|
|
||||||
|
|
||||||
async def serve() -> None:
|
async def serve() -> None:
|
||||||
|
"""Start MCP server."""
|
||||||
|
required_vars = ["OPENAPI_SPEC", "AIRFLOW_BASE_URL", "AUTH_TOKEN"]
|
||||||
|
if not all(var in os.environ for var in required_vars):
|
||||||
|
raise ValueError(f"Missing required environment variables: {required_vars}")
|
||||||
|
|
||||||
server = Server("airflow-mcp-server")
|
server = Server("airflow-mcp-server")
|
||||||
|
|
||||||
@server.list_tools()
|
@server.list_tools()
|
||||||
async def list_tools() -> list[Tool]:
|
async def list_tools() -> list[Tool]:
|
||||||
tools = [
|
return get_airflow_tools()
|
||||||
# DAG Operations
|
|
||||||
Tool(
|
|
||||||
name=AirflowAPITools.LIST_DAGS,
|
|
||||||
description="Lists all DAGs in Airflow",
|
|
||||||
inputSchema=ListDags.model_json_schema(),
|
|
||||||
),
|
|
||||||
]
|
|
||||||
if "AIRFLOW_BASE_URL" in os.environ and "AUTH_TOKEN" in os.environ:
|
|
||||||
return tools
|
|
||||||
else:
|
|
||||||
return []
|
|
||||||
|
|
||||||
@server.call_tool()
|
@server.call_tool()
|
||||||
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
|
async def call_tool(name: str, arguments: dict[str, Any]) -> list[TextContent]:
|
||||||
dag_tools = get_airflow_dag_tools()
|
try:
|
||||||
|
tool = get_tool(name)
|
||||||
match name:
|
result = await tool.run(**arguments)
|
||||||
case AirflowAPITools.LIST_DAGS:
|
return [TextContent(type="text", text=str(result))]
|
||||||
result = await dag_tools.list_dags()
|
except Exception as e:
|
||||||
return [TextContent(type="text", text=result)]
|
logger.error("Tool execution failed: %s", e)
|
||||||
case _:
|
raise
|
||||||
raise ValueError(f"Unknown tool: {name}")
|
|
||||||
|
|
||||||
options = server.create_initialization_options()
|
options = server.create_initialization_options()
|
||||||
async with stdio_server() as (read_stream, write_stream):
|
async with stdio_server() as (read_stream, write_stream):
|
||||||
|
|||||||
@@ -1,103 +0,0 @@
|
|||||||
import os
|
|
||||||
|
|
||||||
import aiohttp
|
|
||||||
|
|
||||||
|
|
||||||
class AirflowDagTools:
|
|
||||||
def __init__(self):
|
|
||||||
self.airflow_base_url = os.getenv("AIRFLOW_BASE_URL")
|
|
||||||
self.auth_token = os.getenv("AUTH_TOKEN")
|
|
||||||
self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.auth_token}"}
|
|
||||||
|
|
||||||
async def list_dags(
|
|
||||||
self,
|
|
||||||
limit: int | None = 100,
|
|
||||||
offset: int | None = None,
|
|
||||||
order_by: str | None = None,
|
|
||||||
tags: list[str] | None = None,
|
|
||||||
only_active: bool = True,
|
|
||||||
paused: bool | None = None,
|
|
||||||
fields: list[str] | None = None,
|
|
||||||
dag_id_pattern: str | None = None,
|
|
||||||
) -> list[str]:
|
|
||||||
"""
|
|
||||||
List all DAGs in Airflow.
|
|
||||||
|
|
||||||
Sample response:
|
|
||||||
{
|
|
||||||
"dags": [
|
|
||||||
{
|
|
||||||
"dag_id": "string",
|
|
||||||
"dag_display_name": "string",
|
|
||||||
"root_dag_id": "string",
|
|
||||||
"is_paused": true,
|
|
||||||
"is_active": true,
|
|
||||||
"is_subdag": true,
|
|
||||||
"last_parsed_time": "2019-08-24T14:15:22Z",
|
|
||||||
"last_pickled": "2019-08-24T14:15:22Z",
|
|
||||||
"last_expired": "2019-08-24T14:15:22Z",
|
|
||||||
"scheduler_lock": true,
|
|
||||||
"pickle_id": "string",
|
|
||||||
"default_view": "string",
|
|
||||||
"fileloc": "string",
|
|
||||||
"file_token": "string",
|
|
||||||
"owners": [
|
|
||||||
"string"
|
|
||||||
],
|
|
||||||
"description": "string",
|
|
||||||
"schedule_interval": {
|
|
||||||
"__type": "string",
|
|
||||||
"days": 0,
|
|
||||||
"seconds": 0,
|
|
||||||
"microseconds": 0
|
|
||||||
},
|
|
||||||
"timetable_description": "string",
|
|
||||||
"tags": [
|
|
||||||
{
|
|
||||||
"name": "string"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"max_active_tasks": 0,
|
|
||||||
"max_active_runs": 0,
|
|
||||||
"has_task_concurrency_limits": true,
|
|
||||||
"has_import_errors": true,
|
|
||||||
"next_dagrun": "2019-08-24T14:15:22Z",
|
|
||||||
"next_dagrun_data_interval_start": "2019-08-24T14:15:22Z",
|
|
||||||
"next_dagrun_data_interval_end": "2019-08-24T14:15:22Z",
|
|
||||||
"next_dagrun_create_after": "2019-08-24T14:15:22Z",
|
|
||||||
"max_consecutive_failed_dag_runs": 0
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"total_entries": 0
|
|
||||||
}
|
|
||||||
|
|
||||||
Args:
|
|
||||||
limit (int, optional): The numbers of items to return.
|
|
||||||
offset (int, optional): The number of items to skip before starting to collect the result set.
|
|
||||||
order_by (str, optional): The name of the field to order the results by. Prefix a field name with - to reverse the sort order. New in version 2.1.0
|
|
||||||
tags (list[str], optional): List of tags to filter results. New in version 2.2.0
|
|
||||||
only_active (bool, optional): Only filter active DAGs. New in version 2.1.1
|
|
||||||
paused (bool, optional): Only filter paused/unpaused DAGs. If absent or null, it returns paused and unpaused DAGs. New in version 2.6.0
|
|
||||||
fields (list[str], optional): List of field for return.
|
|
||||||
dag_id_pattern (str, optional): If set, only return DAGs with dag_ids matching this pattern.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
list[str]: A list of DAG names.
|
|
||||||
"""
|
|
||||||
dags = []
|
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
params = {
|
|
||||||
"limit": limit,
|
|
||||||
"offset": offset,
|
|
||||||
"order_by": order_by,
|
|
||||||
"tags": tags,
|
|
||||||
"only_active": only_active,
|
|
||||||
"paused": paused,
|
|
||||||
"fields": fields,
|
|
||||||
"dag_id_pattern": dag_id_pattern,
|
|
||||||
}
|
|
||||||
async with session.get(f"{self.airflow_base_url}/api/v1/dags", headers=self.headers, params=params) as response:
|
|
||||||
if response.status == 200:
|
|
||||||
dags = await response.json()
|
|
||||||
|
|
||||||
return dags
|
|
||||||
@@ -32,14 +32,17 @@ def create_validation_error(field: str, message: str) -> ValidationError:
|
|||||||
|
|
||||||
|
|
||||||
class AirflowTool(BaseTools):
|
class AirflowTool(BaseTools):
|
||||||
"""Tool for executing Airflow API operations."""
|
"""
|
||||||
|
Tool for executing Airflow API operations.
|
||||||
|
AirflowTool is supposed to have objects per operation.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, operation_details: OperationDetails, client: AirflowClient) -> None:
|
def __init__(self, operation_details: OperationDetails, client: AirflowClient) -> None:
|
||||||
"""Initialize tool with operation details and client.
|
"""Initialize tool with operation details and client.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
operation_details: Parsed operation details
|
operation_details: Operation details
|
||||||
client: Configured Airflow API client
|
client: AirflowClient instance
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.operation = operation_details
|
self.operation = operation_details
|
||||||
|
|||||||
@@ -1,22 +0,0 @@
|
|||||||
from pydantic import BaseModel, model_validator
|
|
||||||
|
|
||||||
|
|
||||||
# DAG operations
|
|
||||||
# ====================================================================
|
|
||||||
class ListDags(BaseModel):
|
|
||||||
"""Parameters for listing DAGs."""
|
|
||||||
|
|
||||||
limit: int | None
|
|
||||||
offset: int | None
|
|
||||||
order_by: str | None
|
|
||||||
tags: list[str] | None
|
|
||||||
only_active: bool
|
|
||||||
paused: bool | None
|
|
||||||
fields: list[str] | None
|
|
||||||
dag_id_pattern: str | None
|
|
||||||
|
|
||||||
@model_validator(mode="after")
|
|
||||||
def validate_offset(self) -> "ListDags":
|
|
||||||
if self.offset is not None and self.offset < 0:
|
|
||||||
raise ValueError("offset must be non-negative")
|
|
||||||
return self
|
|
||||||
@@ -1,243 +1,77 @@
|
|||||||
"""Tool manager for handling Airflow API tool instantiation and caching."""
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import logging
|
import logging
|
||||||
from collections import OrderedDict
|
import os
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any
|
from mcp.types import Tool
|
||||||
|
|
||||||
from airflow_mcp_server.client.airflow_client import AirflowClient
|
from airflow_mcp_server.client.airflow_client import AirflowClient
|
||||||
from airflow_mcp_server.parser.operation_parser import OperationParser
|
from airflow_mcp_server.parser.operation_parser import OperationParser
|
||||||
from airflow_mcp_server.tools.airflow_dag_tools import AirflowDagTools
|
|
||||||
from airflow_mcp_server.tools.airflow_tool import AirflowTool
|
from airflow_mcp_server.tools.airflow_tool import AirflowTool
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
# Keep existing function for backward compatibility
|
_tools_cache: dict[str, AirflowTool] = {}
|
||||||
_dag_tools: AirflowDagTools | None = None
|
_client: AirflowClient | None = None
|
||||||
|
|
||||||
|
|
||||||
def get_airflow_dag_tools() -> AirflowDagTools:
|
def get_airflow_tools() -> list[Tool]:
|
||||||
global _dag_tools
|
"""Get list of all available Airflow tools.
|
||||||
if not _dag_tools:
|
|
||||||
_dag_tools = AirflowDagTools()
|
|
||||||
return _dag_tools
|
|
||||||
|
|
||||||
|
Returns:
|
||||||
class ToolManagerError(Exception):
|
List of MCP Tool objects representing available operations
|
||||||
"""Base exception for tool manager errors."""
|
|
||||||
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class ToolInitializationError(ToolManagerError):
|
|
||||||
"""Error during tool initialization."""
|
|
||||||
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class ToolNotFoundError(ToolManagerError):
|
|
||||||
"""Error when requested tool is not found."""
|
|
||||||
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class ToolManager:
|
|
||||||
"""Manager for Airflow API tools with caching and lifecycle management.
|
|
||||||
|
|
||||||
This class provides a centralized way to manage Airflow API tools with:
|
|
||||||
- Singleton client management
|
|
||||||
- Tool caching with size limits
|
|
||||||
- Thread-safe access
|
|
||||||
- Proper error handling
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
spec_path: Path | str | object,
|
|
||||||
base_url: str,
|
|
||||||
auth_token: str,
|
|
||||||
max_cache_size: int = 100,
|
|
||||||
) -> None:
|
|
||||||
"""Initialize tool manager.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
spec_path: Path to OpenAPI spec file or file-like object
|
|
||||||
base_url: Base URL for Airflow API
|
|
||||||
auth_token: Authentication token
|
|
||||||
max_cache_size: Maximum number of tools to cache (default: 100)
|
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ToolManagerError: If initialization fails
|
ValueError: If required environment variables are missing
|
||||||
ToolInitializationError: If client or parser initialization fails
|
|
||||||
"""
|
"""
|
||||||
try:
|
global _tools_cache, _client
|
||||||
# Validate inputs
|
|
||||||
if not spec_path:
|
|
||||||
raise ValueError("spec_path is required")
|
|
||||||
if not base_url:
|
|
||||||
raise ValueError("base_url is required")
|
|
||||||
if not auth_token:
|
|
||||||
raise ValueError("auth_token is required")
|
|
||||||
if max_cache_size < 1:
|
|
||||||
raise ValueError("max_cache_size must be positive")
|
|
||||||
|
|
||||||
# Store configuration
|
if not _tools_cache:
|
||||||
self._spec_path = spec_path
|
required_vars = ["OPENAPI_SPEC", "AIRFLOW_BASE_URL", "AUTH_TOKEN"]
|
||||||
self._base_url = base_url.rstrip("/")
|
if not all(var in os.environ for var in required_vars):
|
||||||
self._auth_token = auth_token
|
raise ValueError(f"Missing required environment variables: {required_vars}")
|
||||||
self._max_cache_size = max_cache_size
|
|
||||||
|
# Initialize client if not exists
|
||||||
|
if not _client:
|
||||||
|
_client = AirflowClient(spec_path=os.environ["OPENAPI_SPEC"], base_url=os.environ["AIRFLOW_BASE_URL"], auth_token=os.environ["AUTH_TOKEN"])
|
||||||
|
|
||||||
# Initialize core components with proper error handling
|
|
||||||
try:
|
try:
|
||||||
self._client = AirflowClient(spec_path, self._base_url, auth_token)
|
# Create parser
|
||||||
logger.info("AirflowClient initialized successfully")
|
parser = OperationParser(os.environ["OPENAPI_SPEC"])
|
||||||
|
|
||||||
|
# Generate tools for each operation
|
||||||
|
for operation_id in parser.get_operations():
|
||||||
|
operation_details = parser.parse_operation(operation_id)
|
||||||
|
tool = AirflowTool(operation_details, _client)
|
||||||
|
_tools_cache[operation_id] = tool
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error("Failed to initialize AirflowClient: %s", e)
|
logger.error("Failed to initialize tools: %s", e)
|
||||||
raise ToolInitializationError(f"Failed to initialize client: {e}") from e
|
raise
|
||||||
|
|
||||||
try:
|
# Convert to MCP Tool format
|
||||||
self._parser = OperationParser(spec_path)
|
return [
|
||||||
logger.info("OperationParser initialized successfully")
|
Tool(
|
||||||
except Exception as e:
|
name=operation_id,
|
||||||
logger.error("Failed to initialize OperationParser: %s", e)
|
description=tool.operation.operation_id,
|
||||||
raise ToolInitializationError(f"Failed to initialize parser: {e}") from e
|
inputSchema=tool.operation.request_body.model_json_schema() if tool.operation.request_body else None,
|
||||||
|
)
|
||||||
|
for operation_id, tool in _tools_cache.items()
|
||||||
|
]
|
||||||
|
|
||||||
# Setup thread safety and caching
|
|
||||||
self._lock = asyncio.Lock()
|
|
||||||
self._tool_cache: OrderedDict[str, AirflowTool] = OrderedDict()
|
|
||||||
|
|
||||||
logger.info("Tool manager initialized successfully (cache_size=%d, base_url=%s)", max_cache_size, self._base_url)
|
def get_tool(name: str) -> AirflowTool:
|
||||||
except ValueError as e:
|
"""Get specific tool by name.
|
||||||
logger.error("Invalid configuration: %s", e)
|
|
||||||
raise ToolManagerError(f"Invalid configuration: {e}") from e
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Failed to initialize tool manager: %s", e)
|
|
||||||
raise ToolInitializationError(f"Component initialization failed: {e}") from e
|
|
||||||
|
|
||||||
async def __aenter__(self) -> "ToolManager":
|
|
||||||
"""Enter async context."""
|
|
||||||
try:
|
|
||||||
if not hasattr(self, "_client"):
|
|
||||||
logger.error("Client not initialized")
|
|
||||||
raise ToolInitializationError("Client not initialized")
|
|
||||||
await self._client.__aenter__()
|
|
||||||
return self
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Failed to enter async context: %s", e)
|
|
||||||
if hasattr(self, "_client"):
|
|
||||||
try:
|
|
||||||
await self._client.__aexit__(None, None, None)
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
raise ToolInitializationError(f"Failed to initialize client session: {e}") from e
|
|
||||||
|
|
||||||
async def __aexit__(self, exc_type, exc_val, exc_tb) -> None:
|
|
||||||
"""Exit async context."""
|
|
||||||
try:
|
|
||||||
await self._client.__aexit__(exc_type, exc_val, exc_tb)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Error during context exit: %s", e)
|
|
||||||
finally:
|
|
||||||
self.clear_cache()
|
|
||||||
|
|
||||||
def _evict_cache_if_needed(self) -> None:
|
|
||||||
"""Evict oldest items from cache if size limit is reached.
|
|
||||||
|
|
||||||
This method uses FIFO (First In First Out) eviction policy.
|
|
||||||
Eviction occurs when cache reaches max_cache_size.
|
|
||||||
"""
|
|
||||||
current_size = len(self._tool_cache)
|
|
||||||
if current_size >= self._max_cache_size:
|
|
||||||
logger.info("Cache limit reached (%d/%d). Starting eviction.", current_size, self._max_cache_size)
|
|
||||||
logger.debug("Current cache contents: %s", list(self._tool_cache.keys()))
|
|
||||||
|
|
||||||
evicted_count = 0
|
|
||||||
while len(self._tool_cache) >= self._max_cache_size:
|
|
||||||
operation_id, _ = self._tool_cache.popitem(last=False)
|
|
||||||
evicted_count += 1
|
|
||||||
logger.debug("Evicted tool %s from cache (size: %d/%d)", operation_id, len(self._tool_cache), self._max_cache_size)
|
|
||||||
|
|
||||||
if evicted_count > 0:
|
|
||||||
logger.info("Evicted %d tools from cache", evicted_count)
|
|
||||||
|
|
||||||
async def get_tool(self, operation_id: str) -> AirflowTool:
|
|
||||||
"""Get or create a tool instance for the given operation.
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
operation_id: Operation ID from OpenAPI spec
|
name: Tool/operation name
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
AirflowTool instance
|
AirflowTool instance
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ToolNotFoundError: If operation not found
|
KeyError: If tool not found
|
||||||
ToolInitializationError: If tool creation fails
|
|
||||||
ValueError: If operation_id is invalid
|
|
||||||
"""
|
"""
|
||||||
if not operation_id or not isinstance(operation_id, str):
|
if name not in _tools_cache:
|
||||||
logger.error("Invalid operation_id provided: %s", operation_id)
|
# Ensure cache is populated
|
||||||
raise ValueError("Invalid operation_id")
|
get_airflow_tools()
|
||||||
|
|
||||||
if not hasattr(self, "_client") or not hasattr(self, "_parser"):
|
return _tools_cache[name]
|
||||||
logger.error("ToolManager not properly initialized")
|
|
||||||
raise ToolInitializationError("ToolManager components not initialized")
|
|
||||||
|
|
||||||
logger.debug("Requesting tool for operation: %s", operation_id)
|
|
||||||
|
|
||||||
async with self._lock:
|
|
||||||
# Check cache first
|
|
||||||
if operation_id in self._tool_cache:
|
|
||||||
logger.debug("Tool cache hit for %s", operation_id)
|
|
||||||
return self._tool_cache[operation_id]
|
|
||||||
|
|
||||||
logger.debug("Tool cache miss for %s, creating new instance", operation_id)
|
|
||||||
|
|
||||||
try:
|
|
||||||
# Parse operation details
|
|
||||||
try:
|
|
||||||
operation_details = self._parser.parse_operation(operation_id)
|
|
||||||
except ValueError as e:
|
|
||||||
logger.error("Operation %s not found: %s", operation_id, e)
|
|
||||||
raise ToolNotFoundError(f"Operation {operation_id} not found") from e
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Failed to parse operation %s: %s", operation_id, e)
|
|
||||||
raise ToolInitializationError(f"Operation parsing failed: {e}") from e
|
|
||||||
|
|
||||||
# Create new tool instance
|
|
||||||
try:
|
|
||||||
tool = AirflowTool(operation_details, self._client)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Failed to create tool instance for %s: %s", operation_id, e)
|
|
||||||
raise ToolInitializationError(f"Tool instantiation failed: {e}") from e
|
|
||||||
|
|
||||||
# Update cache
|
|
||||||
self._evict_cache_if_needed()
|
|
||||||
self._tool_cache[operation_id] = tool
|
|
||||||
logger.info("Created and cached new tool for %s", operation_id)
|
|
||||||
|
|
||||||
return tool
|
|
||||||
|
|
||||||
except (ToolNotFoundError, ToolInitializationError):
|
|
||||||
raise
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Unexpected error creating tool for %s: %s", operation_id, e)
|
|
||||||
raise ToolInitializationError(f"Unexpected error: {e}") from e
|
|
||||||
|
|
||||||
def clear_cache(self) -> None:
|
|
||||||
"""Clear the tool cache."""
|
|
||||||
self._tool_cache.clear()
|
|
||||||
logger.debug("Tool cache cleared")
|
|
||||||
|
|
||||||
@property
|
|
||||||
def cache_info(self) -> dict[str, Any]:
|
|
||||||
"""Get cache statistics.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Dictionary with cache statistics
|
|
||||||
"""
|
|
||||||
return {
|
|
||||||
"size": len(self._tool_cache),
|
|
||||||
"max_size": self._max_cache_size,
|
|
||||||
"operations": list(self._tool_cache.keys()),
|
|
||||||
}
|
|
||||||
|
|||||||
Reference in New Issue
Block a user