Merge pull request #3 from abhishekbhakat/fix-openai-provider
Fix openai provider
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
MODELS = {
|
||||
"openai": {
|
||||
"name": "OpenAI",
|
||||
"endpoint": "https://api.openai.com/v1/chat/completions",
|
||||
"endpoint": "https://api.openai.com/v1",
|
||||
"models": [
|
||||
{
|
||||
"id": "gpt-4o",
|
||||
|
||||
@@ -37,6 +37,15 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
base_url: Optional base URL for the API (used for OpenRouter)
|
||||
"""
|
||||
self.api_key = api_key
|
||||
|
||||
# Ensure the base_url doesn't end with /chat/completions to prevent URL duplication
|
||||
if base_url and '/chat/completions' in base_url:
|
||||
# Strip the /chat/completions part and ensure we have a proper base URL
|
||||
base_url = base_url.split('/chat/completions')[0]
|
||||
if not base_url.endswith('/v1'):
|
||||
base_url = f"{base_url}/v1" if not base_url.endswith('/') else f"{base_url}v1"
|
||||
logger.info(f"Modified base_url to prevent endpoint duplication: {base_url}")
|
||||
|
||||
self.client = OpenAI(api_key=api_key, base_url=base_url)
|
||||
|
||||
def convert_tools(self, airflow_tools: list) -> list:
|
||||
@@ -200,7 +209,7 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
return results
|
||||
|
||||
def create_follow_up_completion(
|
||||
self, messages: list[dict[str, Any]], model: str, temperature: float = 0.4, max_tokens: int | None = None, tool_results: dict[str, Any] = None, original_response: Any = None
|
||||
self, messages: list[dict[str, Any]], model: str, temperature: float = 0.4, max_tokens: int | None = None, tool_results: dict[str, Any] = None, original_response: Any = None, stream: bool = False, tools: list[dict[str, Any]] | None = None
|
||||
) -> Any:
|
||||
"""
|
||||
Create a follow-up completion with tool results.
|
||||
@@ -212,22 +221,51 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
max_tokens: Maximum tokens to generate
|
||||
tool_results: Results of tool executions
|
||||
original_response: Original response with tool calls
|
||||
stream: Whether to stream the response
|
||||
tools: List of tool definitions in OpenAI format
|
||||
|
||||
Returns:
|
||||
OpenAI response object
|
||||
OpenAI response object or StreamingResponse if streaming
|
||||
"""
|
||||
if not original_response or not tool_results:
|
||||
return original_response
|
||||
|
||||
# Get the original message with tool calls
|
||||
original_message = original_response.choices[0].message
|
||||
# Handle StreamingResponse objects
|
||||
if isinstance(original_response, StreamingResponse):
|
||||
logger.info("Processing StreamingResponse in create_follow_up_completion")
|
||||
# Extract tool calls from StreamingResponse
|
||||
tool_calls = []
|
||||
if original_response.tool_call is not None:
|
||||
logger.info(f"Found tool call in StreamingResponse: {original_response.tool_call}")
|
||||
tool_call = original_response.tool_call
|
||||
# Create a simplified tool call structure for the assistant message
|
||||
tool_calls.append({
|
||||
"id": tool_call.get("id", ""),
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_call.get("name", ""),
|
||||
"arguments": json.dumps(tool_call.get("input", {}))
|
||||
}
|
||||
})
|
||||
|
||||
# Create a new message with the tool calls
|
||||
assistant_message = {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [{"id": tc.id, "type": "function", "function": {"name": tc.function.name, "arguments": tc.function.arguments}} for tc in original_message.tool_calls],
|
||||
}
|
||||
# Create a new message with the tool calls
|
||||
assistant_message = {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": tool_calls,
|
||||
}
|
||||
else:
|
||||
# Handle regular OpenAI response objects
|
||||
logger.info("Processing regular OpenAI response in create_follow_up_completion")
|
||||
# Get the original message with tool calls
|
||||
original_message = original_response.choices[0].message
|
||||
|
||||
# Create a new message with the tool calls
|
||||
assistant_message = {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [{"id": tc.id, "type": "function", "function": {"name": tc.function.name, "arguments": tc.function.arguments}} for tc in original_message.tool_calls],
|
||||
}
|
||||
|
||||
# Create tool result messages
|
||||
tool_messages = []
|
||||
@@ -238,14 +276,14 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
new_messages = messages + [assistant_message] + tool_messages
|
||||
|
||||
# Make a second request to get the final response
|
||||
logger.info("Making second request with tool results")
|
||||
logger.info(f"Making second request with tool results (stream={stream})")
|
||||
return self.create_chat_completion(
|
||||
messages=new_messages,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
stream=False,
|
||||
tools=None, # No tools needed for follow-up
|
||||
stream=stream,
|
||||
tools=tools, # Pass tools parameter for follow-up
|
||||
)
|
||||
|
||||
def get_content(self, response: Any) -> str:
|
||||
@@ -284,6 +322,9 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
def generate():
|
||||
nonlocal tool_call, tool_use_detected, current_tool_call
|
||||
|
||||
# Flag to track if we've yielded any content
|
||||
has_yielded_content = False
|
||||
|
||||
for chunk in response:
|
||||
# Check for tool call in the delta
|
||||
if chunk.choices and hasattr(chunk.choices[0].delta, "tool_calls") and chunk.choices[0].delta.tool_calls:
|
||||
@@ -315,16 +356,25 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
|
||||
# Update the arguments if they're provided in this chunk
|
||||
if hasattr(delta_tool_call, "function") and hasattr(delta_tool_call.function, "arguments") and delta_tool_call.function.arguments and current_tool_call:
|
||||
# Instead of trying to parse each chunk as JSON, accumulate the arguments
|
||||
# and only parse the complete JSON at the end
|
||||
if "_raw_arguments" not in current_tool_call:
|
||||
current_tool_call["_raw_arguments"] = ""
|
||||
|
||||
# Accumulate the raw arguments
|
||||
current_tool_call["_raw_arguments"] += delta_tool_call.function.arguments
|
||||
|
||||
# Try to parse the accumulated arguments
|
||||
try:
|
||||
# Try to parse the arguments JSON
|
||||
arguments = json.loads(delta_tool_call.function.arguments)
|
||||
arguments = json.loads(current_tool_call["_raw_arguments"])
|
||||
if isinstance(arguments, dict):
|
||||
current_tool_call["input"].update(arguments)
|
||||
# Successfully parsed the complete JSON
|
||||
current_tool_call["input"] = arguments # Replace instead of update
|
||||
# Update the StreamingResponse object's tool_call attribute
|
||||
streaming_response.tool_call = current_tool_call
|
||||
except json.JSONDecodeError:
|
||||
# If the arguments are not valid JSON, just log a warning
|
||||
logger.warning(f"Failed to parse arguments: {delta_tool_call.function.arguments}")
|
||||
# This is expected for partial JSON - we'll try again with the next chunk
|
||||
logger.debug(f"Accumulated partial arguments: {current_tool_call['_raw_arguments']}")
|
||||
|
||||
# Skip yielding content for tool call chunks
|
||||
continue
|
||||
@@ -332,7 +382,30 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
# For the final chunk, set the tool_call attribute
|
||||
if chunk.choices and hasattr(chunk.choices[0], "finish_reason") and chunk.choices[0].finish_reason == "tool_calls":
|
||||
logger.info("Streaming response finished with tool_calls reason")
|
||||
|
||||
# If we haven't yielded any content yet and we're finishing with tool_calls,
|
||||
# yield a placeholder message so the frontend has something to display
|
||||
if not has_yielded_content and tool_use_detected:
|
||||
logger.info("Yielding placeholder content for tool call")
|
||||
yield "I'll help you with that." # Simple placeholder message
|
||||
has_yielded_content = True
|
||||
if current_tool_call:
|
||||
# One final attempt to parse the arguments if we have accumulated raw arguments
|
||||
if "_raw_arguments" in current_tool_call and current_tool_call["_raw_arguments"]:
|
||||
try:
|
||||
arguments = json.loads(current_tool_call["_raw_arguments"])
|
||||
if isinstance(arguments, dict):
|
||||
current_tool_call["input"] = arguments
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"Failed to parse final arguments: {current_tool_call['_raw_arguments']}")
|
||||
# If we still can't parse it, use an empty dict as fallback
|
||||
if not current_tool_call["input"]:
|
||||
current_tool_call["input"] = {}
|
||||
|
||||
# Remove the raw arguments from the final tool call
|
||||
if "_raw_arguments" in current_tool_call:
|
||||
del current_tool_call["_raw_arguments"]
|
||||
|
||||
tool_call = current_tool_call
|
||||
logger.info(f"Final tool call: {json.dumps(tool_call)}")
|
||||
# Update the StreamingResponse object's tool_call attribute
|
||||
@@ -343,6 +416,7 @@ class OpenAIProvider(BaseLLMProvider):
|
||||
if chunk.choices and hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content:
|
||||
content = chunk.choices[0].delta.content
|
||||
yield content
|
||||
has_yielded_content = True
|
||||
|
||||
# Create the generator
|
||||
gen = generate()
|
||||
|
||||
@@ -67,6 +67,15 @@ def convert_to_openai_tools(airflow_tools: list) -> list:
|
||||
if "default" in param_info and param_info["default"] is not None:
|
||||
param_def["default"] = param_info["default"]
|
||||
|
||||
# Add items property for array types
|
||||
if param_def.get("type") == "array" and "items" not in param_def:
|
||||
# If items is defined in the original schema, use it
|
||||
if "items" in param_info:
|
||||
param_def["items"] = param_info["items"]
|
||||
else:
|
||||
# Otherwise, default to string items
|
||||
param_def["items"] = {"type": "string"}
|
||||
|
||||
# Add to properties
|
||||
openai_tool["function"]["parameters"]["properties"][param_name] = param_def
|
||||
|
||||
@@ -141,3 +150,7 @@ def _handle_schema_construct(param_def: dict[str, Any], param_info: dict[str, An
|
||||
# If no type was found, default to string
|
||||
if "type" not in param_def:
|
||||
param_def["type"] = "string"
|
||||
|
||||
# Add items property for array types
|
||||
if param_def.get("type") == "array" and "items" not in param_def:
|
||||
param_def["items"] = {"type": "string"}
|
||||
|
||||
Reference in New Issue
Block a user