feat: add Dolphin MCP integration and update project documentation

This commit is contained in:
2025-03-25 18:06:43 +00:00
parent f8dec1951f
commit 4bdda5dd76
4 changed files with 357 additions and 1 deletions

View File

@@ -0,0 +1,295 @@
# Dolphin MCP Implementation Plan
## Overview
This document outlines the plan for integrating Dolphin MCP into the existing Streamlit chat application. The integration will enable the chat app to use MCP tools with OpenAI models.
## 1. Configuration Setup
### Enhanced config.ini Structure
We'll expand the existing `[mcp]` section in `config.ini`:
```ini
[openai]
api_key = your_api_key
base_url = https://openrouter.ai/api/v1
model = deepseek/deepseek-chat-v3-0324
[mcp]
enabled = true
# Server configurations in INI format
server.example.command = uvx
server.example.args = mcp-server-example
server.example.env.API_KEY = your-api-key
```
### Configuration Parsing
The OpenAIClient will parse this into a format Dolphin MCP can use:
```python
def parse_mcp_config(self):
if not self.config.has_section('mcp'):
return None
mcp_config = {"mcpServers": {}, "models": []}
# Check if MCP is enabled
if not self.config['mcp'].getboolean('enabled', False):
return None
# Parse server configurations
for key in self.config['mcp']:
if key.startswith('server.') and '.' in key[7:]:
parts = key.split('.')
server_name = parts[1]
config_key = '.'.join(parts[2:])
if server_name not in mcp_config["mcpServers"]:
mcp_config["mcpServers"][server_name] = {
"command": "",
"args": [],
"env": {}
}
if config_key == 'command':
mcp_config["mcpServers"][server_name]["command"] = self.config['mcp'][key]
elif config_key == 'args':
mcp_config["mcpServers"][server_name]["args"] = self.config['mcp'][key].split()
elif config_key.startswith('env.'):
env_key = config_key[4:]
mcp_config["mcpServers"][server_name]["env"][env_key] = self.config['mcp'][key]
# Add model configuration from existing OpenAI settings
model_config = {
"model": self.config['openai']['model'],
"provider": "openai",
"apiKey": self.config['openai']['api_key'],
"apiBase": self.config['openai']['base_url"],
"systemMessage": "You are a helpful assistant that can use tools."
}
mcp_config["models"].append(model_config)
return mcp_config
```
## 2. Code Changes
### OpenAIClient Modifications
1. Import Dolphin MCP components:
```python
from dolphin_mcp import run_interaction
```
2. Update initialization to include MCP:
```python
def __init__(self):
# Existing OpenAI client setup
self.tools = [] # Will store available MCP tools
# No need to create MCPClient directly
# run_interaction will handle provider selection
```
3. Update get_chat_response to use MCP tools:
```python
async def get_chat_response(self, messages):
mcp_config = self.parse_mcp_config()
if not mcp_config:
# Fall back to standard OpenAI if MCP not enabled
return self.client.chat.completions.create(
model=self.config['openai']['model'],
messages=messages,
stream=True
)
# Use Dolphin MCP with our parsed config
return run_interaction(
user_query=messages[-1]["content"],
model_name=self.config['openai']['model'],
config=mcp_config, # Pass the config dict directly
stream=True
)
```
## 3. Server Management with Synchronous Wrapper
To properly manage MCP servers in a Streamlit context, we'll implement a synchronous wrapper:
```python
import asyncio
import threading
from dolphin_mcp import MCPClient, run_interaction
class SyncMCPManager:
"""Synchronous wrapper for MCP server management"""
def __init__(self, config):
self.config = config
self.servers = {}
self.initialized = False
self._lock = threading.Lock()
def initialize(self):
"""Initialize and start all MCP servers synchronously"""
if self.initialized:
return True
with self._lock:
if self.initialized: # Double-check after acquiring lock
return True
if not self.config or "mcpServers" not in self.config:
return False
# Run the async initialization in a synchronous wrapper
loop = asyncio.new_event_loop()
success = loop.run_until_complete(self._async_initialize())
loop.close()
self.initialized = success
return success
async def _async_initialize(self):
"""Async implementation of server initialization"""
success = True
for server_name, server_config in self.config["mcpServers"].items():
client = MCPClient(
server_name=server_name,
command=server_config.get("command"),
args=server_config.get("args", []),
env=server_config.get("env", {})
)
ok = await client.start()
if ok:
# Get available tools
tools = await client.list_tools()
self.servers[server_name] = {
"client": client,
"tools": tools
}
else:
success = False
print(f"Failed to start MCP server: {server_name}")
return success
def shutdown(self):
"""Shut down all MCP servers synchronously"""
if not self.initialized:
return
with self._lock:
if not self.initialized:
return
loop = asyncio.new_event_loop()
loop.run_until_complete(self._async_shutdown())
loop.close()
self.servers = {}
self.initialized = False
async def _async_shutdown(self):
"""Async implementation of server shutdown"""
for server_info in self.servers.values():
await server_info["client"].stop()
def process_query(self, query, model_name=None):
"""Process a query using MCP tools synchronously"""
if not self.initialized:
self.initialize()
if not self.initialized:
return {"error": "Failed to initialize MCP servers"}
loop = asyncio.new_event_loop()
result = loop.run_until_complete(self._async_process_query(query, model_name))
loop.close()
return result
async def _async_process_query(self, query, model_name=None):
"""Async implementation of query processing"""
return await run_interaction(
user_query=query,
model_name=model_name,
config=self.config,
stream=False
)
```
### Streamlit Integration Example
```python
# In app.py
import streamlit as st
from openai_client import OpenAIClient
from mcp_manager import SyncMCPManager
# Initialize on app startup
@st.cache_resource
def get_mcp_manager():
client = OpenAIClient()
mcp_config = client.parse_mcp_config()
if mcp_config:
manager = SyncMCPManager(mcp_config)
manager.initialize() # Start servers immediately
return manager
return None
# Get or initialize the MCP manager
mcp_manager = get_mcp_manager()
# Clean up when the app is killed
import atexit
if mcp_manager:
atexit.register(mcp_manager.shutdown)
def handle_user_input():
if prompt := st.chat_input("Type your message..."):
if mcp_manager and mcp_manager.initialized:
response = mcp_manager.process_query(
prompt,
model_name=client.config['openai']['model']
)
# Handle response...
```
## 4. Streamlit App Updates
1. Add tool usage indicators to the UI
2. Handle streaming responses with tool calls
3. Add error handling for MCP operations
## 4. Testing Strategy
### Phase 1: Basic Integration
- Verify MCP client initialization
- Test tool discovery
- Simple tool calls
### Phase 2: Full Integration
- End-to-end testing with real queries
- Error scenario testing
- Performance testing
## 5. Future Enhancements
1. Tool discovery UI
2. Tool configuration interface
3. Multiple MCP server support
4. Advanced error recovery
## Implementation Timeline
1. **Week 1**: Basic integration and testing
2. **Week 2**: Full UI integration
3. **Week 3**: Comprehensive testing
4. **Week 4**: Deployment and monitoring
## Potential Challenges
1. **Tool Compatibility**: Ensuring tools work with OpenAI's function calling
2. **Error Handling**: Robust error recovery when tools fail
3. **Performance**: Minimizing latency from tool calls
4. **Security**: Properly handling sensitive data in tool calls