feat: Implement GoogleProvider for Google Generative AI integration

- Added GoogleProvider class to handle chat completions with Google Gemini API.
- Implemented client initialization and response handling for streaming and non-streaming responses.
- Created utility functions for tool conversion, response parsing, and content extraction.
- Removed legacy tool conversion utilities from the tools module.
- Enhanced logging for better traceability of API interactions and error handling.
This commit is contained in:
2025-03-27 11:11:56 +00:00
parent 678f395649
commit 6b390a35f8
10 changed files with 979 additions and 567 deletions

View File

@@ -0,0 +1,205 @@
# src/providers/google_provider/response.py
"""
Response handling utilities specific to the Google Generative AI provider.
Includes functions for:
- Extracting content from streaming responses.
- Extracting content from non-streaming responses.
- Extracting token usage information.
"""
import json
import logging
from collections.abc import Generator
from typing import Any
from google.genai.types import GenerateContentResponse
logger = logging.getLogger(__name__)
def get_streaming_content(response: Any) -> Generator[str, None, None]:
"""
Yields content chunks (text) from a Google streaming response iterator.
Args:
response: The streaming response iterator returned by `generate_content(stream=True)`.
Yields:
String chunks of the generated text content.
May yield JSON strings containing error information if errors occur during streaming.
"""
logger.debug("Processing Google stream...")
full_delta = ""
try:
# Check if the response itself is an error indicator (e.g., from create_chat_completion error handling)
if isinstance(response, dict) and "error" in response:
yield json.dumps(response)
logger.error(f"Stream processing stopped due to initial error: {response['error']}")
return
# Check if response is already an error iterator
if hasattr(response, "__iter__") and not hasattr(response, "candidates"):
# If it looks like an error iterator from create_chat_completion
first_item = next(response, None)
if first_item and isinstance(first_item, str):
try:
error_data = json.loads(first_item)
if "error" in error_data:
yield first_item # Yield the error JSON
yield from response
logger.error(f"Stream processing stopped due to yielded error: {error_data['error']}")
return
except json.JSONDecodeError:
# Not a JSON error, yield it as is and continue? Or stop?
# Assuming it might be valid content if not JSON error.
yield first_item
elif first_item: # Put the first item back if it wasn't an error
# This requires a way to chain iterators, simple yield doesn't work well here.
# For simplicity, we assume error iterators yield JSON strings.
# If the stream is valid, the loop below will handle it.
# Re-assigning response might be complex. Let the main loop handle valid streams.
pass # Let the main loop handle the original response iterator
# Process the stream chunk by chunk
for chunk in response:
# Check for errors embedded within the stream chunks (less common for Google?)
if isinstance(chunk, dict) and "error" in chunk:
yield json.dumps(chunk)
logger.error(f"Error encountered during Google stream: {chunk['error']}")
continue # Continue processing stream or stop? Continuing for now.
# Extract text content
delta = ""
try:
if hasattr(chunk, "text"):
delta = chunk.text
elif hasattr(chunk, "candidates") and chunk.candidates:
# Sometimes content might be nested under candidates even in stream?
# Check the first candidate's first part for text.
first_candidate = chunk.candidates[0]
if hasattr(first_candidate, "content") and hasattr(first_candidate.content, "parts") and first_candidate.content.parts:
first_part = first_candidate.content.parts[0]
if hasattr(first_part, "text"):
delta = first_part.text
except Exception as e:
logger.warning(f"Could not extract text from stream chunk: {chunk}. Error: {e}", exc_info=True)
delta = "" # Ensure delta is a string
if delta:
full_delta += delta
yield delta
# Detect function calls during stream (optional, for logging/early detection)
try:
if hasattr(chunk, "candidates") and chunk.candidates:
for part in chunk.candidates[0].content.parts:
if hasattr(part, "function_call") and part.function_call:
logger.debug(f"Function call detected during stream: {part.function_call.name}")
# Note: We don't yield the function call itself here, just the text.
# Function calls are typically processed after the stream completes.
break # Found a function call in this chunk
except Exception:
# Ignore errors during optional function call detection in stream
pass
logger.debug(f"Google stream finished. Total delta length: {len(full_delta)}")
except StopIteration:
logger.debug("Google stream finished (StopIteration).") # Normal end of iteration
except Exception as e:
logger.error(f"Error processing Google stream: {e}", exc_info=True)
# Yield a final error message
yield json.dumps({"error": f"Stream processing error: {str(e)}"})
def get_content(response: GenerateContentResponse | dict[str, Any]) -> str:
"""
Extracts the full text content from a non-streaming Google response.
Args:
response: The non-streaming response object (`GenerateContentResponse`) or
an error dictionary.
Returns:
The concatenated text content, or an error message string.
"""
try:
# Handle error dictionary case
if isinstance(response, dict) and "error" in response:
logger.error(f"Cannot get content from error response: {response['error']}")
return f"[Error: {response['error']}]"
# Handle successful GenerateContentResponse object
if hasattr(response, "text"):
# The `.text` attribute usually provides the concatenated text content directly
content = response.text
logger.debug(f"Extracted content (length {len(content)}) from response.text.")
return content
elif hasattr(response, "candidates") and response.candidates:
# Fallback: manually concatenate text from parts if .text is missing
first_candidate = response.candidates[0]
if hasattr(first_candidate, "content") and hasattr(first_candidate.content, "parts"):
text_parts = []
for part in first_candidate.content.parts:
if hasattr(part, "text"):
text_parts.append(part.text)
# We are only interested in text content here, ignore function calls etc.
content = "".join(text_parts)
logger.debug(f"Extracted content (length {len(content)}) from response candidates' parts.")
return content
else:
logger.warning("Google response candidate has no content or parts.")
return "" # Return empty string if no text found
else:
logger.warning(f"Could not extract content from Google response: No 'text' or valid 'candidates'. Response type: {type(response)}")
return "" # Return empty string if no text found
except AttributeError as ae:
logger.error(f"Attribute error extracting content from Google response: {ae}. Response object: {response}", exc_info=True)
return f"[Error extracting content: Attribute missing - {str(ae)}]"
except Exception as e:
logger.error(f"Unexpected error extracting content from Google response: {e}", exc_info=True)
return f"[Error extracting content: {str(e)}]"
def get_usage(response: GenerateContentResponse | dict[str, Any]) -> dict[str, int] | None:
"""
Extracts token usage information from a Google response object.
Args:
response: The response object (`GenerateContentResponse`) or an error dictionary.
Returns:
A dictionary containing 'prompt_tokens' and 'completion_tokens', or None if
usage information is unavailable or an error occurred.
"""
try:
# Handle error dictionary case
if isinstance(response, dict) and "error" in response:
logger.warning("Cannot get usage from error response.")
return None
# Check for usage metadata in the response object
if hasattr(response, "usage_metadata"):
metadata = response.usage_metadata
# Google uses prompt_token_count and candidates_token_count
usage = {
"prompt_tokens": getattr(metadata, "prompt_token_count", 0),
"completion_tokens": getattr(metadata, "candidates_token_count", 0),
# Google also provides total_token_count, could be added if needed
# "total_tokens": getattr(metadata, "total_token_count", 0),
}
# Ensure values are integers
usage = {k: int(v) for k, v in usage.items()}
logger.debug(f"Extracted usage from Google response metadata: {usage}")
return usage
else:
# Log a warning only if it's not clearly an error dict already handled
if not (isinstance(response, dict) and "error" in response):
logger.warning(f"Could not extract usage from Google response object of type {type(response)}. No 'usage_metadata' attribute found.")
return None
except AttributeError as ae:
logger.error(f"Attribute error extracting usage from Google response: {ae}. Response object: {response}", exc_info=True)
return None
except Exception as e:
logger.error(f"Unexpected error extracting usage from Google response: {e}", exc_info=True)
return None