feat: implement AnthropicProvider with client initialization, message handling, and utility functions
This commit is contained in:
@@ -1,453 +0,0 @@
|
||||
# src/providers/anthropic_provider.py
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
from collections.abc import Generator
|
||||
from typing import Any
|
||||
|
||||
from anthropic import Anthropic, APIError, Stream
|
||||
from anthropic.types import Message, MessageStreamEvent, TextDelta
|
||||
|
||||
from providers.base import BaseProvider
|
||||
from src.llm_models import MODELS
|
||||
from src.tools.conversion import convert_to_anthropic_tools
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AnthropicProvider(BaseProvider):
|
||||
"""Provider implementation for Anthropic Claude models."""
|
||||
|
||||
def __init__(self, api_key: str, base_url: str | None = None):
|
||||
# Anthropic client doesn't use base_url in the same way, but store it if needed
|
||||
# Use default Anthropic endpoint if base_url is not provided or relevant
|
||||
effective_base_url = base_url or MODELS.get("anthropic", {}).get("endpoint")
|
||||
super().__init__(api_key, effective_base_url) # Pass base_url to parent, though Anthropic client might ignore it
|
||||
logger.info("Initializing AnthropicProvider")
|
||||
try:
|
||||
self.client = Anthropic(api_key=self.api_key)
|
||||
# Note: Anthropic client doesn't take base_url during init
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize Anthropic client: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
def _get_context_window(self, model: str) -> int:
|
||||
"""Retrieves the context window size for a given Anthropic model."""
|
||||
default_window = 100000 # Default fallback for Anthropic
|
||||
try:
|
||||
provider_models = MODELS.get("anthropic", {}).get("models", [])
|
||||
for m in provider_models:
|
||||
if m.get("id") == model:
|
||||
return m.get("context_window", default_window)
|
||||
logger.warning(f"Context window for Anthropic model '{model}' not found in MODELS config. Using default: {default_window}")
|
||||
return default_window
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving context window for model {model}: {e}. Using default: {default_window}", exc_info=True)
|
||||
return default_window
|
||||
|
||||
def _count_anthropic_tokens(self, messages: list[dict[str, Any]], system_prompt: str | None) -> int:
|
||||
"""Counts tokens for Anthropic messages using the official client."""
|
||||
# Note: Anthropic's count_tokens might not directly accept the message list format used for creation.
|
||||
# It often expects plain text. We need to concatenate the content appropriately.
|
||||
# This is a simplification and might not be perfectly accurate, especially with tool calls/results.
|
||||
# A more robust approach might involve formatting messages into a single string representation.
|
||||
text_to_count = ""
|
||||
if system_prompt:
|
||||
text_to_count += f"System: {system_prompt}\n\n"
|
||||
for message in messages:
|
||||
role = message.get("role")
|
||||
content = message.get("content")
|
||||
# Simple concatenation - might need refinement for complex content types (tool calls/results)
|
||||
if isinstance(content, str):
|
||||
text_to_count += f"{role}: {content}\n"
|
||||
elif isinstance(content, list): # Handle tool results/calls if represented as list
|
||||
try:
|
||||
content_str = json.dumps(content)
|
||||
text_to_count += f"{role}: {content_str}\n"
|
||||
except Exception:
|
||||
text_to_count += f"{role}: [Unserializable Content]\n"
|
||||
|
||||
try:
|
||||
# Use the client's count_tokens method if available and works with text
|
||||
# Check Anthropic documentation for the correct usage
|
||||
# Assuming self.client.count_tokens exists and takes text
|
||||
count = self.client.count_tokens(text=text_to_count)
|
||||
logger.debug(f"Counted Anthropic tokens using client.count_tokens: {count}")
|
||||
return count
|
||||
except APIError as api_err:
|
||||
# Handle potential errors if count_tokens itself is an API call or fails
|
||||
logger.error(f"Anthropic API error during token count: {api_err}", exc_info=True)
|
||||
# Fallback to approximation if official count fails?
|
||||
estimated_tokens = math.ceil(len(text_to_count) / 4.0) # Same approximation as OpenAI
|
||||
logger.warning(f"Falling back to character count approximation for Anthropic: {estimated_tokens}")
|
||||
return estimated_tokens
|
||||
except AttributeError:
|
||||
# Fallback if count_tokens method doesn't exist or works differently
|
||||
logger.warning("self.client.count_tokens not available or failed. Falling back to character count approximation.")
|
||||
estimated_tokens = math.ceil(len(text_to_count) / 4.0) # Same approximation as OpenAI
|
||||
return estimated_tokens
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error during Anthropic token count: {e}", exc_info=True)
|
||||
estimated_tokens = math.ceil(len(text_to_count) / 4.0) # Fallback approximation
|
||||
logger.warning(f"Falling back to character count approximation due to unexpected error: {estimated_tokens}")
|
||||
return estimated_tokens
|
||||
|
||||
def _truncate_messages(self, messages: list[dict[str, Any]], system_prompt: str | None, model: str) -> tuple[list[dict[str, Any]], str | None, int, int]:
|
||||
"""
|
||||
Truncates messages for Anthropic, preserving system prompt.
|
||||
|
||||
Returns:
|
||||
- Potentially truncated list of messages.
|
||||
- Original system prompt (or None).
|
||||
- Initial token count.
|
||||
- Final token count.
|
||||
"""
|
||||
context_limit = self._get_context_window(model)
|
||||
buffer = 200 # Safety buffer
|
||||
effective_limit = context_limit - buffer
|
||||
|
||||
initial_token_count = self._count_anthropic_tokens(messages, system_prompt)
|
||||
final_token_count = initial_token_count
|
||||
|
||||
truncated_messages = list(messages) # Copy
|
||||
|
||||
# Anthropic requires alternating user/assistant messages. Truncation needs care.
|
||||
# We remove from the beginning (after potential system prompt).
|
||||
# Removing the oldest message (index 0 of the list passed here, as system is separate)
|
||||
|
||||
while final_token_count > effective_limit and len(truncated_messages) > 0:
|
||||
# Always remove the oldest message (index 0)
|
||||
removed_message = truncated_messages.pop(0)
|
||||
logger.debug(f"Truncating Anthropic message at index 0 (Role: {removed_message.get('role')}) due to context limit.")
|
||||
|
||||
# Ensure alternation after removal if possible (might be complex)
|
||||
# For simplicity, just remove and recount for now.
|
||||
# A more robust approach might need to remove pairs (user/assistant).
|
||||
|
||||
final_token_count = self._count_anthropic_tokens(truncated_messages, system_prompt)
|
||||
logger.debug(f"Recalculated Anthropic tokens: {final_token_count}")
|
||||
|
||||
# Safety break
|
||||
if not truncated_messages:
|
||||
logger.warning("Truncation resulted in empty message list for Anthropic.")
|
||||
break
|
||||
|
||||
if initial_token_count != final_token_count:
|
||||
logger.info(
|
||||
f"Truncated messages for Anthropic model {model}. Initial tokens: {initial_token_count}, Final tokens: {final_token_count}, Limit: {context_limit} (Effective: {effective_limit})"
|
||||
)
|
||||
else:
|
||||
logger.debug(f"No truncation needed for Anthropic model {model}. Tokens: {final_token_count}, Limit: {context_limit} (Effective: {effective_limit})")
|
||||
|
||||
# Ensure the remaining messages start with 'user' role if no system prompt
|
||||
if not system_prompt and truncated_messages and truncated_messages[0].get("role") != "user":
|
||||
logger.warning("First message after truncation is not 'user'. Prepending placeholder.")
|
||||
# This might indicate an issue with the simple pop(0) logic if pairs weren't removed.
|
||||
# For now, prepend a basic user message.
|
||||
truncated_messages.insert(0, {"role": "user", "content": "[Context truncated]"})
|
||||
# Recount after adding placeholder? Might exceed limit again. Risky.
|
||||
# Let's log a warning instead of adding potentially problematic content.
|
||||
# logger.warning("First message after truncation is not 'user'. This might cause issues with Anthropic API.")
|
||||
|
||||
return truncated_messages, system_prompt, initial_token_count, final_token_count
|
||||
|
||||
def _convert_messages(self, messages: list[dict[str, Any]]) -> tuple[str | None, list[dict[str, Any]]]:
|
||||
"""Converts standard message format to Anthropic's format, extracting system prompt."""
|
||||
anthropic_messages = []
|
||||
system_prompt = None
|
||||
for i, message in enumerate(messages):
|
||||
role = message.get("role")
|
||||
content = message.get("content")
|
||||
|
||||
if role == "system":
|
||||
if i == 0:
|
||||
system_prompt = content
|
||||
logger.debug("Extracted system prompt for Anthropic.")
|
||||
else:
|
||||
# Handle system message not at the start (append to previous user message or add as user)
|
||||
logger.warning("System message found not at the beginning. Treating as user message.")
|
||||
anthropic_messages.append({"role": "user", "content": f"[System Note]\n{content}"})
|
||||
continue
|
||||
|
||||
# Handle tool results specifically
|
||||
if role == "tool":
|
||||
# Find the preceding assistant message with the corresponding tool_use block
|
||||
# This requires careful handling in the follow-up logic
|
||||
tool_use_id = message.get("tool_call_id")
|
||||
tool_content = content
|
||||
# Format as a tool_result content block
|
||||
anthropic_messages.append({"role": "user", "content": [{"type": "tool_result", "tool_use_id": tool_use_id, "content": tool_content}]})
|
||||
continue
|
||||
|
||||
# Handle assistant message potentially containing tool_use blocks
|
||||
if role == "assistant":
|
||||
# Check if content is structured (e.g., from a previous tool call response)
|
||||
if isinstance(content, list): # Assuming tool calls might be represented as a list
|
||||
anthropic_messages.append({"role": "assistant", "content": content})
|
||||
else:
|
||||
anthropic_messages.append({"role": "assistant", "content": content}) # Regular text content
|
||||
continue
|
||||
|
||||
# Regular user messages
|
||||
if role == "user":
|
||||
anthropic_messages.append({"role": "user", "content": content})
|
||||
continue
|
||||
|
||||
logger.warning(f"Unsupported role '{role}' in message conversion for Anthropic.")
|
||||
|
||||
# Ensure conversation starts with a user message if no system prompt was used
|
||||
if not system_prompt and anthropic_messages and anthropic_messages[0]["role"] != "user":
|
||||
logger.warning("Anthropic conversation must start with a user message. Prepending empty user message.")
|
||||
anthropic_messages.insert(0, {"role": "user", "content": "[Start of conversation]"}) # Or handle differently
|
||||
|
||||
return system_prompt, anthropic_messages
|
||||
|
||||
def create_chat_completion(
|
||||
self,
|
||||
messages: list[dict[str, str]],
|
||||
model: str,
|
||||
temperature: float = 0.4,
|
||||
max_tokens: int | None = None, # Anthropic requires max_tokens
|
||||
stream: bool = True,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
) -> Stream[MessageStreamEvent] | Message:
|
||||
"""Creates a chat completion using the Anthropic API, handling context truncation."""
|
||||
logger.debug(f"Anthropic create_chat_completion called. Model: {model}, Stream: {stream}, Tools: {bool(tools)}")
|
||||
|
||||
# --- Context Truncation ---
|
||||
# First, convert to Anthropic format to separate system prompt
|
||||
temp_system_prompt, temp_anthropic_messages = self._convert_messages(messages)
|
||||
# Then, truncate based on token count
|
||||
truncated_anthropic_msgs, final_system_prompt, _, _ = self._truncate_messages(temp_anthropic_messages, temp_system_prompt, model)
|
||||
# --------------------------
|
||||
|
||||
# Anthropic requires max_tokens
|
||||
if max_tokens is None:
|
||||
max_tokens = 4096 # Default value if not provided
|
||||
logger.warning(f"max_tokens not provided for Anthropic, defaulting to {max_tokens}")
|
||||
|
||||
# system_prompt, anthropic_messages = self._convert_messages(messages) # Moved above
|
||||
|
||||
try:
|
||||
completion_params = {
|
||||
"model": model,
|
||||
"messages": truncated_anthropic_msgs, # Use truncated messages
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
"stream": stream,
|
||||
}
|
||||
if final_system_prompt: # Use potentially modified system prompt
|
||||
completion_params["system"] = final_system_prompt
|
||||
if tools:
|
||||
completion_params["tools"] = tools
|
||||
# Anthropic doesn't have an explicit 'tool_choice' like OpenAI's 'auto' in the main API call
|
||||
|
||||
# Remove None values (though Anthropic requires max_tokens)
|
||||
completion_params = {k: v for k, v in completion_params.items() if v is not None}
|
||||
|
||||
log_params = completion_params.copy()
|
||||
if "messages" in log_params:
|
||||
log_params["messages"] = [{k: (v[:100] + "..." if isinstance(v, str) and len(v) > 100 else v) for k, v in msg.items()} for msg in log_params["messages"][-2:]]
|
||||
tools_log = log_params.get("tools", "Not Present")
|
||||
logger.debug(f"Calling Anthropic API. Model: {log_params.get('model')}, Stream: {log_params.get('stream')}, System: {bool(log_params.get('system'))}, Tools: {tools_log}")
|
||||
logger.debug(f"Full API Params (messages summarized): {log_params}")
|
||||
|
||||
response = self.client.messages.create(**completion_params)
|
||||
logger.debug("Anthropic API call successful.")
|
||||
|
||||
# --- Capture Actual Usage ---
|
||||
actual_usage = None
|
||||
if isinstance(response, Message) and response.usage:
|
||||
actual_usage = {
|
||||
"prompt_tokens": response.usage.input_tokens, # Anthropic uses input_tokens
|
||||
"completion_tokens": response.usage.output_tokens, # Anthropic uses output_tokens
|
||||
# Anthropic doesn't typically provide total_tokens directly in usage block
|
||||
"total_tokens": response.usage.input_tokens + response.usage.output_tokens,
|
||||
}
|
||||
logger.info(f"Actual Anthropic API usage: {actual_usage}")
|
||||
# TODO: How to get usage for streaming responses? Anthropic might send it in a final 'message_stop' event? Needs investigation.
|
||||
|
||||
return response
|
||||
# --------------------------
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Anthropic API error: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
def get_streaming_content(self, response: Stream[MessageStreamEvent]) -> Generator[str, None, None]:
|
||||
"""Yields content chunks from an Anthropic streaming response."""
|
||||
logger.debug("Processing Anthropic stream...")
|
||||
full_delta = ""
|
||||
try:
|
||||
# Iterate through events in the stream
|
||||
for event in response:
|
||||
if event.type == "content_block_delta":
|
||||
# Check if the delta is for text content before accessing .text
|
||||
if isinstance(event.delta, TextDelta):
|
||||
delta_text = event.delta.text
|
||||
if delta_text:
|
||||
full_delta += delta_text
|
||||
yield delta_text
|
||||
# Ignore other delta types like InputJSONDelta for text streaming
|
||||
# Other event types like 'message_start', 'content_block_start', etc., can be logged or handled if needed
|
||||
elif event.type == "message_start":
|
||||
logger.debug(f"Anthropic stream started. Model: {event.message.model}")
|
||||
elif event.type == "message_stop":
|
||||
# The stop_reason might be available on the 'message' object associated with the stream,
|
||||
# not directly on the stop event itself. We log that the stop event occurred.
|
||||
# Accessing the actual reason might require inspecting the final message state if needed.
|
||||
logger.debug("Anthropic stream message_stop event received.")
|
||||
elif event.type == "content_block_start":
|
||||
if event.content_block.type == "tool_use":
|
||||
logger.debug(f"Anthropic stream detected tool use start: ID {event.content_block.id}, Name: {event.content_block.name}")
|
||||
elif event.type == "content_block_stop":
|
||||
logger.debug(f"Anthropic stream detected content block stop. Index: {event.index}")
|
||||
|
||||
logger.debug(f"Anthropic stream finished. Total delta length: {len(full_delta)}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing Anthropic stream: {e}", exc_info=True)
|
||||
yield json.dumps({"error": f"Stream processing error: {str(e)}"})
|
||||
|
||||
def get_content(self, response: Message) -> str:
|
||||
"""Extracts content from a non-streaming Anthropic response."""
|
||||
try:
|
||||
# Combine text content from all text blocks
|
||||
text_content = "".join([block.text for block in response.content if block.type == "text"])
|
||||
logger.debug(f"Extracted content (length {len(text_content)}) from non-streaming Anthropic response.")
|
||||
return text_content
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting content from Anthropic response: {e}", exc_info=True)
|
||||
return f"[Error extracting content: {str(e)}]"
|
||||
|
||||
def has_tool_calls(self, response: Stream[MessageStreamEvent] | Message) -> bool:
|
||||
"""Checks if the Anthropic response contains tool calls."""
|
||||
try:
|
||||
if isinstance(response, Message): # Non-streaming
|
||||
# Check stop reason and content blocks
|
||||
has_tool_use_block = any(block.type == "tool_use" for block in response.content)
|
||||
has_calls = response.stop_reason == "tool_use" or has_tool_use_block
|
||||
logger.debug(f"Non-streaming Anthropic response check: stop_reason='{response.stop_reason}', has_tool_use_block={has_tool_use_block}. Result: {has_calls}")
|
||||
return has_calls
|
||||
elif isinstance(response, Stream):
|
||||
# Cannot reliably check an unconsumed stream without consuming it.
|
||||
# The LLMClient should handle this by checking after consumption or based on stop_reason if available post-stream.
|
||||
logger.warning("has_tool_calls check on an Anthropic stream is unreliable before consumption.")
|
||||
return False
|
||||
else:
|
||||
logger.warning(f"has_tool_calls received unexpected type for Anthropic: {type(response)}")
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.error(f"Error checking for Anthropic tool calls: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
def parse_tool_calls(self, response: Message) -> list[dict[str, Any]]:
|
||||
"""Parses tool calls from a non-streaming Anthropic response."""
|
||||
parsed_calls = []
|
||||
try:
|
||||
if not isinstance(response, Message):
|
||||
logger.error(f"parse_tool_calls expects Anthropic Message, got {type(response)}")
|
||||
return []
|
||||
|
||||
if response.stop_reason != "tool_use":
|
||||
logger.debug("No tool use indicated by stop_reason.")
|
||||
# return [] # Might still have tool_use blocks even if stop_reason isn't tool_use? Check API docs. Let's check content anyway.
|
||||
|
||||
tool_use_blocks = [block for block in response.content if block.type == "tool_use"]
|
||||
if not tool_use_blocks:
|
||||
logger.debug("No 'tool_use' content blocks found in Anthropic response.")
|
||||
return []
|
||||
|
||||
logger.debug(f"Parsing {len(tool_use_blocks)} 'tool_use' blocks from Anthropic response.")
|
||||
for block in tool_use_blocks:
|
||||
# Adapt server/tool name splitting if needed (similar to OpenAI provider)
|
||||
# Assuming Anthropic tool names might also be prefixed like "server__tool"
|
||||
parts = block.name.split("__", 1)
|
||||
if len(parts) == 2:
|
||||
server_name, func_name = parts
|
||||
else:
|
||||
logger.warning(f"Could not determine server_name from Anthropic tool name '{block.name}'.")
|
||||
server_name = None
|
||||
func_name = block.name
|
||||
|
||||
parsed_calls.append({
|
||||
"id": block.id,
|
||||
"server_name": server_name,
|
||||
"function_name": func_name,
|
||||
"arguments": json.dumps(block.input), # Anthropic input is already a dict, dump to string like OpenAI provider expects? Or keep as dict? Let's keep as dict for now.
|
||||
# "arguments": block.input, # Keep as dict? Let's try this first.
|
||||
})
|
||||
|
||||
return parsed_calls
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing Anthropic tool calls: {e}", exc_info=True)
|
||||
return []
|
||||
|
||||
def format_tool_results(self, tool_call_id: str, result: Any) -> dict[str, Any]:
|
||||
"""Formats a tool result for an Anthropic follow-up request."""
|
||||
# Anthropic expects a 'tool_result' content block
|
||||
# The content of the result block should typically be a string.
|
||||
try:
|
||||
if isinstance(result, dict):
|
||||
content_str = json.dumps(result)
|
||||
else:
|
||||
content_str = str(result)
|
||||
except Exception as e:
|
||||
logger.error(f"Error JSON-encoding tool result for Anthropic {tool_call_id}: {e}")
|
||||
content_str = json.dumps({"error": "Failed to encode tool result", "original_type": str(type(result))})
|
||||
|
||||
logger.debug(f"Formatting Anthropic tool result for call ID {tool_call_id}")
|
||||
# This needs to be placed inside a "user" role message's content list
|
||||
return {
|
||||
"type": "tool_result",
|
||||
"tool_use_id": tool_call_id,
|
||||
"content": content_str,
|
||||
# Optionally add is_error=True if result indicates an error
|
||||
}
|
||||
|
||||
def convert_tools(self, tools: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
||||
"""Converts internal tool format to Anthropic's format."""
|
||||
# Use the conversion function, assuming it's correctly placed and imported
|
||||
logger.debug(f"Converting {len(tools)} tools to Anthropic format.")
|
||||
try:
|
||||
# The conversion function needs to handle the server__tool prefixing
|
||||
anthropic_tools = convert_to_anthropic_tools(tools)
|
||||
logger.debug(f"Tool conversion result: {anthropic_tools}")
|
||||
return anthropic_tools
|
||||
except Exception as e:
|
||||
logger.error(f"Error during Anthropic tool conversion: {e}", exc_info=True)
|
||||
return []
|
||||
|
||||
# Helper needed by LLMClient's current tool handling logic (if adapting OpenAI's pattern)
|
||||
def get_original_message_with_calls(self, response: Message) -> dict[str, Any]:
|
||||
"""Extracts the assistant's message containing tool calls for Anthropic."""
|
||||
try:
|
||||
if isinstance(response, Message) and any(block.type == "tool_use" for block in response.content):
|
||||
# Anthropic's response structure is different. The 'message' itself is the assistant's turn.
|
||||
# We need to return a representation of this turn, including the tool_use blocks.
|
||||
# Convert Pydantic models within content to dicts
|
||||
content_list = [block.model_dump(exclude_unset=True) for block in response.content]
|
||||
return {"role": "assistant", "content": content_list}
|
||||
else:
|
||||
logger.warning("Could not extract original message with tool calls from Anthropic response.")
|
||||
return {"role": "assistant", "content": "[Could not extract tool calls message]"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting original Anthropic message with calls: {e}", exc_info=True)
|
||||
return {"role": "assistant", "content": f"[Error extracting tool calls message: {str(e)}]"}
|
||||
|
||||
def get_usage(self, response: Any) -> dict[str, int] | None:
|
||||
"""Extracts token usage from a non-streaming Anthropic response."""
|
||||
try:
|
||||
if isinstance(response, Message) and response.usage:
|
||||
usage = {
|
||||
"prompt_tokens": response.usage.input_tokens,
|
||||
"completion_tokens": response.usage.output_tokens,
|
||||
# "total_tokens": response.usage.input_tokens + response.usage.output_tokens, # Optional
|
||||
}
|
||||
logger.debug(f"Extracted usage from Anthropic response: {usage}")
|
||||
return usage
|
||||
else:
|
||||
logger.warning(f"Could not extract usage from Anthropic response object of type {type(response)}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting usage from Anthropic response: {e}", exc_info=True)
|
||||
return None
|
||||
34
src/providers/anthropic_provider/__init__.py
Normal file
34
src/providers/anthropic_provider/__init__.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from providers.anthropic_provider.client import initialize_client
|
||||
from providers.anthropic_provider.completion import create_chat_completion
|
||||
from providers.anthropic_provider.response import get_content, get_streaming_content, get_usage
|
||||
from providers.anthropic_provider.tools import convert_tools, format_tool_results, has_tool_calls, parse_tool_calls
|
||||
from providers.base import BaseProvider
|
||||
|
||||
|
||||
class AnthropicProvider(BaseProvider):
|
||||
def __init__(self, api_key: str, base_url: str | None = None):
|
||||
self.client = initialize_client(api_key, base_url)
|
||||
|
||||
def create_chat_completion(self, messages, model, temperature=0.4, max_tokens=None, stream=True, tools=None):
|
||||
return create_chat_completion(self, messages, model, temperature, max_tokens, stream, tools)
|
||||
|
||||
def get_streaming_content(self, response):
|
||||
return get_streaming_content(response)
|
||||
|
||||
def get_content(self, response):
|
||||
return get_content(response)
|
||||
|
||||
def has_tool_calls(self, response):
|
||||
return has_tool_calls(response)
|
||||
|
||||
def parse_tool_calls(self, response):
|
||||
return parse_tool_calls(response)
|
||||
|
||||
def format_tool_results(self, tool_call_id, result):
|
||||
return format_tool_results(tool_call_id, result)
|
||||
|
||||
def convert_tools(self, tools):
|
||||
return convert_tools(tools)
|
||||
|
||||
def get_usage(self, response):
|
||||
return get_usage(response)
|
||||
17
src/providers/anthropic_provider/client.py
Normal file
17
src/providers/anthropic_provider/client.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import logging
|
||||
|
||||
from anthropic import Anthropic
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def initialize_client(api_key: str, base_url: str | None = None) -> Anthropic:
|
||||
logger.info("Initializing Anthropic client")
|
||||
try:
|
||||
client = Anthropic(api_key=api_key)
|
||||
if base_url:
|
||||
logger.warning(f"base_url '{base_url}' provided but not used by Anthropic client")
|
||||
return client
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize Anthropic client: {e}", exc_info=True)
|
||||
raise
|
||||
38
src/providers/anthropic_provider/completion.py
Normal file
38
src/providers/anthropic_provider/completion.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from anthropic import Stream
|
||||
from anthropic.types import Message
|
||||
|
||||
from providers.anthropic_provider.messages import convert_messages, truncate_messages
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def create_chat_completion(
|
||||
provider, messages: list[dict[str, Any]], model: str, temperature: float = 0.4, max_tokens: int | None = None, stream: bool = True, tools: list[dict[str, Any]] | None = None
|
||||
) -> Stream | Message:
|
||||
logger.debug(f"Creating Anthropic chat completion. Model: {model}, Stream: {stream}, Tools: {bool(tools)}")
|
||||
temp_system_prompt, temp_anthropic_messages = convert_messages(messages)
|
||||
truncated_messages, final_system_prompt, _, _ = truncate_messages(provider, temp_anthropic_messages, temp_system_prompt, model)
|
||||
if max_tokens is None:
|
||||
max_tokens = 4096
|
||||
logger.warning(f"max_tokens not provided, defaulting to {max_tokens}")
|
||||
completion_params = {
|
||||
"model": model,
|
||||
"messages": truncated_messages,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
"stream": stream,
|
||||
}
|
||||
if final_system_prompt:
|
||||
completion_params["system"] = final_system_prompt
|
||||
if tools:
|
||||
completion_params["tools"] = tools
|
||||
try:
|
||||
response = provider.client.messages.create(**completion_params)
|
||||
logger.debug("Anthropic API call successful.")
|
||||
return response
|
||||
except Exception as e:
|
||||
logger.error(f"Anthropic API error: {e}", exc_info=True)
|
||||
raise
|
||||
61
src/providers/anthropic_provider/messages.py
Normal file
61
src/providers/anthropic_provider/messages.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from providers.anthropic_provider.utils import count_anthropic_tokens, get_context_window
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def convert_messages(messages: list[dict[str, Any]]) -> tuple[str | None, list[dict[str, Any]]]:
|
||||
anthropic_messages = []
|
||||
system_prompt = None
|
||||
for i, message in enumerate(messages):
|
||||
role = message.get("role")
|
||||
content = message.get("content")
|
||||
if role == "system":
|
||||
if i == 0:
|
||||
system_prompt = content
|
||||
else:
|
||||
logger.warning("System message not at beginning. Treating as user message.")
|
||||
anthropic_messages.append({"role": "user", "content": f"[System Note]\n{content}"})
|
||||
continue
|
||||
if role == "tool":
|
||||
tool_use_id = message.get("tool_call_id")
|
||||
tool_content = content
|
||||
anthropic_messages.append({"role": "user", "content": [{"type": "tool_result", "tool_use_id": tool_use_id, "content": tool_content}]})
|
||||
continue
|
||||
if role == "assistant":
|
||||
if isinstance(content, list):
|
||||
anthropic_messages.append({"role": "assistant", "content": content})
|
||||
else:
|
||||
anthropic_messages.append({"role": "assistant", "content": content})
|
||||
continue
|
||||
if role == "user":
|
||||
anthropic_messages.append({"role": "user", "content": content})
|
||||
continue
|
||||
logger.warning(f"Unsupported role '{role}' in message conversion.")
|
||||
if not system_prompt and anthropic_messages and anthropic_messages[0]["role"] != "user":
|
||||
logger.warning("Conversation must start with user message. Prepending placeholder.")
|
||||
anthropic_messages.insert(0, {"role": "user", "content": "[Start of conversation]"})
|
||||
return system_prompt, anthropic_messages
|
||||
|
||||
|
||||
def truncate_messages(provider, messages: list[dict[str, Any]], system_prompt: str | None, model: str) -> tuple[list[dict[str, Any]], str | None, int, int]:
|
||||
context_limit = get_context_window(model)
|
||||
buffer = 200
|
||||
effective_limit = context_limit - buffer
|
||||
initial_token_count = count_anthropic_tokens(provider.client, messages, system_prompt)
|
||||
final_token_count = initial_token_count
|
||||
truncated_messages = list(messages)
|
||||
while final_token_count > effective_limit and len(truncated_messages) > 0:
|
||||
removed_message = truncated_messages.pop(0)
|
||||
logger.debug(f"Truncating message (Role: {removed_message.get('role')})")
|
||||
final_token_count = count_anthropic_tokens(provider.client, truncated_messages, system_prompt)
|
||||
if initial_token_count != final_token_count:
|
||||
logger.info(f"Truncated messages. Initial tokens: {initial_token_count}, Final: {final_token_count}")
|
||||
else:
|
||||
logger.debug(f"No truncation needed. Tokens: {final_token_count}")
|
||||
if not system_prompt and truncated_messages and truncated_messages[0].get("role") != "user":
|
||||
logger.warning("First message after truncation is not 'user'. Prepending placeholder.")
|
||||
truncated_messages.insert(0, {"role": "user", "content": "[Context truncated]"})
|
||||
return truncated_messages, system_prompt, initial_token_count, final_token_count
|
||||
62
src/providers/anthropic_provider/response.py
Normal file
62
src/providers/anthropic_provider/response.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from typing import Any
|
||||
|
||||
from anthropic import Stream
|
||||
from anthropic.types import Message, MessageStreamEvent, TextDelta
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_streaming_content(response: Stream[MessageStreamEvent]) -> Generator[str, None, None]:
|
||||
logger.debug("Processing Anthropic stream...")
|
||||
full_delta = ""
|
||||
try:
|
||||
for event in response:
|
||||
if event.type == "content_block_delta":
|
||||
if isinstance(event.delta, TextDelta):
|
||||
delta_text = event.delta.text
|
||||
if delta_text:
|
||||
full_delta += delta_text
|
||||
yield delta_text
|
||||
elif event.type == "message_start":
|
||||
logger.debug(f"Stream started. Model: {event.message.model}")
|
||||
elif event.type == "message_stop":
|
||||
logger.debug("Stream message_stop event received.")
|
||||
elif event.type == "content_block_start":
|
||||
if event.content_block.type == "tool_use":
|
||||
logger.debug(f"Tool use start: ID {event.content_block.id}, Name: {event.content_block.name}")
|
||||
elif event.type == "content_block_stop":
|
||||
logger.debug(f"Content block stop. Index: {event.index}")
|
||||
logger.debug(f"Stream finished. Total delta length: {len(full_delta)}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing stream: {e}", exc_info=True)
|
||||
yield json.dumps({"error": f"Stream processing error: {str(e)}"})
|
||||
|
||||
|
||||
def get_content(response: Message) -> str:
|
||||
try:
|
||||
text_content = "".join([block.text for block in response.content if block.type == "text"])
|
||||
logger.debug(f"Extracted content (length {len(text_content)})")
|
||||
return text_content
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting content: {e}", exc_info=True)
|
||||
return f"[Error extracting content: {str(e)}]"
|
||||
|
||||
|
||||
def get_usage(response: Any) -> dict[str, int] | None:
|
||||
try:
|
||||
if isinstance(response, Message) and response.usage:
|
||||
usage = {
|
||||
"prompt_tokens": response.usage.input_tokens,
|
||||
"completion_tokens": response.usage.output_tokens,
|
||||
}
|
||||
logger.debug(f"Extracted usage: {usage}")
|
||||
return usage
|
||||
else:
|
||||
logger.warning(f"Could not extract usage from {type(response)}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting usage: {e}", exc_info=True)
|
||||
return None
|
||||
74
src/providers/anthropic_provider/tools.py
Normal file
74
src/providers/anthropic_provider/tools.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from anthropic.types import Message
|
||||
|
||||
from src.tools.conversion import convert_to_anthropic_tools
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def has_tool_calls(response: Any) -> bool:
|
||||
try:
|
||||
if isinstance(response, Message):
|
||||
has_tool_use_block = any(block.type == "tool_use" for block in response.content)
|
||||
has_calls = response.stop_reason == "tool_use" or has_tool_use_block
|
||||
logger.debug(f"Tool calls check: stop_reason='{response.stop_reason}', has_tool_use_block={has_tool_use_block}. Result: {has_calls}")
|
||||
return has_calls
|
||||
else:
|
||||
logger.warning(f"has_tool_calls received unexpected type: {type(response)}")
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.error(f"Error checking for tool calls: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def parse_tool_calls(response: Message) -> list[dict[str, Any]]:
|
||||
parsed_calls = []
|
||||
try:
|
||||
if not isinstance(response, Message):
|
||||
logger.error(f"parse_tool_calls expects Message, got {type(response)}")
|
||||
return []
|
||||
tool_use_blocks = [block for block in response.content if block.type == "tool_use"]
|
||||
if not tool_use_blocks:
|
||||
logger.debug("No 'tool_use' content blocks found.")
|
||||
return []
|
||||
logger.debug(f"Parsing {len(tool_use_blocks)} 'tool_use' blocks.")
|
||||
for block in tool_use_blocks:
|
||||
parts = block.name.split("__", 1)
|
||||
if len(parts) == 2:
|
||||
server_name, func_name = parts
|
||||
else:
|
||||
logger.warning(f"Could not determine server_name from tool name '{block.name}'.")
|
||||
server_name = None
|
||||
func_name = block.name
|
||||
parsed_calls.append({"id": block.id, "server_name": server_name, "function_name": func_name, "arguments": block.input})
|
||||
return parsed_calls
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing tool calls: {e}", exc_info=True)
|
||||
return []
|
||||
|
||||
|
||||
def format_tool_results(tool_call_id: str, result: Any) -> dict[str, Any]:
|
||||
try:
|
||||
if isinstance(result, dict):
|
||||
content_str = json.dumps(result)
|
||||
else:
|
||||
content_str = str(result)
|
||||
except Exception as e:
|
||||
logger.error(f"Error encoding tool result for {tool_call_id}: {e}")
|
||||
content_str = json.dumps({"error": "Failed to encode tool result", "original_type": str(type(result))})
|
||||
logger.debug(f"Formatting tool result for call ID {tool_call_id}")
|
||||
return {"type": "tool_result", "tool_use_id": tool_call_id, "content": content_str}
|
||||
|
||||
|
||||
def convert_tools(tools: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
||||
logger.debug(f"Converting {len(tools)} tools to Anthropic format.")
|
||||
try:
|
||||
anthropic_tools = convert_to_anthropic_tools(tools)
|
||||
logger.debug(f"Tool conversion result: {anthropic_tools}")
|
||||
return anthropic_tools
|
||||
except Exception as e:
|
||||
logger.error(f"Error during tool conversion: {e}", exc_info=True)
|
||||
return []
|
||||
50
src/providers/anthropic_provider/utils.py
Normal file
50
src/providers/anthropic_provider/utils.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
from typing import Any
|
||||
|
||||
from anthropic import Anthropic
|
||||
|
||||
from src.llm_models import MODELS
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_context_window(model: str) -> int:
|
||||
default_window = 100000
|
||||
try:
|
||||
provider_models = MODELS.get("anthropic", {}).get("models", [])
|
||||
for m in provider_models:
|
||||
if m.get("id") == model:
|
||||
return m.get("context_window", default_window)
|
||||
logger.warning(f"Context window for Anthropic model '{model}' not found. Using default: {default_window}")
|
||||
return default_window
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving context window for model {model}: {e}. Using default: {default_window}", exc_info=True)
|
||||
return default_window
|
||||
|
||||
|
||||
def count_anthropic_tokens(client: Anthropic, messages: list[dict[str, Any]], system_prompt: str | None) -> int:
|
||||
text_to_count = ""
|
||||
if system_prompt:
|
||||
text_to_count += f"System: {system_prompt}\n\n"
|
||||
for message in messages:
|
||||
role = message.get("role")
|
||||
content = message.get("content")
|
||||
if isinstance(content, str):
|
||||
text_to_count += f"{role}: {content}\n"
|
||||
elif isinstance(content, list):
|
||||
try:
|
||||
content_str = json.dumps(content)
|
||||
text_to_count += f"{role}: {content_str}\n"
|
||||
except Exception:
|
||||
text_to_count += f"{role}: [Unserializable Content]\n"
|
||||
try:
|
||||
count = client.count_tokens(text=text_to_count)
|
||||
logger.debug(f"Counted Anthropic tokens: {count}")
|
||||
return count
|
||||
except Exception as e:
|
||||
logger.error(f"Error counting Anthropic tokens: {e}", exc_info=True)
|
||||
estimated_tokens = math.ceil(len(text_to_count) / 4.0)
|
||||
logger.warning(f"Falling back to approximation: {estimated_tokens}")
|
||||
return estimated_tokens
|
||||
Reference in New Issue
Block a user