Chat history and growing context

This commit is contained in:
2025-02-24 14:23:21 +00:00
parent 3a03f08a4a
commit 5d199ba154
5 changed files with 121 additions and 21 deletions

View File

@@ -0,0 +1,7 @@
import asyncio
from airflow_mcp_server.tools.tool_manager import get_airflow_tools
# Get tools with their parameters
tools = asyncio.run(get_airflow_tools(mode="safe"))
TOOLS = {tool.name: {"description": tool.description, "parameters": tool.inputSchema} for tool in tools}

View File

@@ -0,0 +1,13 @@
INTERFACE_MESSAGES = {
"model_recommendation": {"title": "Note", "content": "For best results with function/tool calling capabilities, we recommend using models like Claude-3.5 Sonnet or GPT-4."},
"security_note": {
"title": "Security",
"content": "For your security, API keys are required for each session and are never stored. If you refresh the page or close the browser, you'll need to enter your API key again.",
},
"context_window": {
"title": "Context Window",
"content": "Each model has a maximum context window size that determines how much text it can process. "
"For long conversations or large code snippets, consider using models with larger context windows like Claude-3 Opus (200K tokens) or GPT-4 Turbo (128K tokens). "
"For better results try to keep the context size as low as possible. Try using new chats instead of reusing the same chat.",
},
}

View File

@@ -0,0 +1,40 @@
"""
Prompt engineering for the Airflow Wingman plugin.
Contains prompts and instructions for the AI assistant.
"""
import json
from airflow_wingman.mcp_tools import TOOLS
INSTRUCTIONS = {
"default": f"""You are Airflow Wingman, a helpful AI assistant integrated into Apache Airflow.
You have deep knowledge of Apache Airflow's architecture, DAGs, operators, and best practices.
The Airflow version being used is >=2.10.
You have access to the following Airflow API tools:
{json.dumps(TOOLS, indent=2)}
You can use these tools to fetch information and help users understand and manage their Airflow environment.
"""
}
def prepare_messages(messages: list[dict[str, str]], instruction_key: str = "default") -> list[dict[str, str]]:
"""Prepare messages for the chat completion request.
Args:
messages: List of messages in the conversation
instruction_key: Key for the instruction template to use
Returns:
List of message dictionaries ready for the chat completion API
"""
instruction = INSTRUCTIONS.get(instruction_key, INSTRUCTIONS["default"])
# Add instruction as first system message if not present
if not messages or messages[0].get("role") != "system":
messages.insert(0, {"role": "system", "content": instruction})
return messages

View File

@@ -15,9 +15,11 @@
<h3 class="panel-title">Airflow Wingman</h3>
</div>
<div class="alert alert-info" style="margin: 15px;">
<p><strong>Note:</strong> For best results with function/tool calling capabilities, we recommend using models like Claude-3.5 Sonnet or GPT-4o. These models excel at understanding and using complex tools effectively.</p>
<p><strong>{{ interface_messages.model_recommendation.title }}:</strong> {{ interface_messages.model_recommendation.content }}</p>
<hr style="margin: 10px 0;">
<p><strong>Security:</strong> For your security, API keys are required for each session and are never stored. If you refresh the page or close the browser, you'll need to enter your API key again. This ensures your API keys remain secure in shared environments.</p>
<p><strong>{{ interface_messages.security_note.title }}:</strong> {{ interface_messages.security_note.content }}</p>
<hr style="margin: 10px 0;">
<p><strong>{{ interface_messages.context_window.title }}:</strong> {{ interface_messages.context_window.content }}</p>
</div>
</div>
</div>
@@ -104,13 +106,22 @@
<!-- Messages will be dynamically added here -->
</div>
<div class="panel-footer" style="padding: 15px; background-color: white;">
<div class="input-group">
<input type="text" class="form-control" id="message-input" placeholder="Type your message...">
<span class="input-group-btn">
<button class="btn btn-primary" type="button" id="send-button">
<i class="fa fa-paper-plane"></i> Send
<div class="row">
<div class="col-md-2">
<button class="btn btn-default btn-block" type="button" id="refresh-button" title="Start a new chat">
<i class="fa fa-refresh"></i> New Chat
</button>
</span>
</div>
<div class="col-md-10">
<div class="input-group">
<input type="text" class="form-control" id="message-input" placeholder="Type your message...">
<span class="input-group-btn">
<button class="btn btn-primary" type="button" id="send-button">
<i class="fa fa-paper-plane"></i> Send
</button>
</span>
</div>
</div>
</div>
</div>
</div>
@@ -218,9 +229,23 @@ document.addEventListener('DOMContentLoaded', function() {
const messageInput = document.getElementById('message-input');
const sendButton = document.getElementById('send-button');
const refreshButton = document.getElementById('refresh-button');
const chatMessages = document.getElementById('chat-messages');
let currentMessageDiv = null;
let messageHistory = [];
function clearChat() {
// Clear the chat messages
chatMessages.innerHTML = '';
// Reset message history
messageHistory = [];
// Clear the input field
messageInput.value = '';
// Enable input if it was disabled
messageInput.disabled = false;
sendButton.disabled = false;
}
function addMessage(content, isUser) {
const messageDiv = document.createElement('div');
@@ -250,17 +275,14 @@ document.addEventListener('DOMContentLoaded', function() {
addMessage(message, true);
try {
// Create messages array with system message
const messages = [
{
role: 'system',
content: 'You are a helpful AI assistant integrated into Apache Airflow.'
},
{
role: 'user',
content: message
}
];
// Add user message to history
messageHistory.push({
role: 'user',
content: message
});
// Use full message history for the request
const messages = [...messageHistory];
// Create assistant message div
currentMessageDiv = addMessage('', false);
@@ -314,6 +336,7 @@ document.addEventListener('DOMContentLoaded', function() {
// Handle streaming response
const reader = response.body.getReader();
const decoder = new TextDecoder();
let fullResponse = '';
while (true) {
const { value, done } = await reader.read();
@@ -327,11 +350,20 @@ document.addEventListener('DOMContentLoaded', function() {
const content = line.slice(6);
if (content) {
currentMessageDiv.textContent += content;
fullResponse += content;
chatMessages.scrollTop = chatMessages.scrollHeight;
}
}
}
}
// Add assistant's response to history
if (fullResponse) {
messageHistory.push({
role: 'assistant',
content: fullResponse
});
}
} catch (error) {
console.error('Error:', error);
currentMessageDiv.textContent = `Error: ${error.message}`;
@@ -345,6 +377,8 @@ document.addEventListener('DOMContentLoaded', function() {
sendMessage();
}
});
refreshButton.addEventListener('click', clearChat);
});
</script>
{% endblock %}

View File

@@ -6,6 +6,8 @@ from flask_appbuilder import BaseView as AppBuilderBaseView, expose
from airflow_wingman.llm_client import LLMClient
from airflow_wingman.llms_models import MODELS
from airflow_wingman.notes import INTERFACE_MESSAGES
from airflow_wingman.prompt_engineering import prepare_messages
class WingmanView(AppBuilderBaseView):
@@ -18,7 +20,7 @@ class WingmanView(AppBuilderBaseView):
def chat(self):
"""Render chat interface."""
providers = {provider: info["name"] for provider, info in MODELS.items()}
return self.render_template("wingman_chat.html", title="Airflow Wingman", models=MODELS, providers=providers)
return self.render_template("wingman_chat.html", title="Airflow Wingman", models=MODELS, providers=providers, interface_messages=INTERFACE_MESSAGES)
@expose("/chat", methods=["POST"])
def chat_completion(self):
@@ -49,10 +51,14 @@ class WingmanView(AppBuilderBaseView):
if missing:
raise ValueError(f"Missing required fields: {', '.join(missing)}")
# Prepare messages with system instruction while maintaining history
messages = data["messages"]
messages = prepare_messages(messages)
return {
"provider": data["provider"],
"model": data["model"],
"messages": data["messages"],
"messages": messages,
"api_key": data["api_key"],
"stream": data.get("stream", False),
"temperature": data.get("temperature", 0.7),