Files
airflow-mcp-server/README.md

48 lines
1.3 KiB
Markdown

# airflow-mcp-server: An MCP Server for controlling Airflow
### Find on Glama
<a href="https://glama.ai/mcp/servers/6gjq9w80xr">
<img width="380" height="200" src="https://glama.ai/mcp/servers/6gjq9w80xr/badge" />
</a>
## Overview
A Model Context Protocol server for controlling Airflow via Airflow APIs.
## Demo Video
https://github.com/user-attachments/assets/f3e60fff-8680-4dd9-b08e-fa7db655a705
## Setup
### Usage with Claude Desktop
```json
{
"mcpServers": {
"airflow-mcp-server": {
"command": "uvx",
"args": [
"airflow-mcp-server"
],
"env": {
"AIRFLOW_BASE_URL": "http://<host:port>/api/v1",
"AUTH_TOKEN": "<base64_encoded_username_password>"
}
}
}
}
```
# Scope
2 different streams in which Airflow MCP Server can be used:
- Adding Airflow to AI (_complete access to an Airflow deployment_)
- This will enable AI to be able to write DAGs and just do things in a schedule on its own.
- Use command `airflow-mcp-server` or `airflow-mcp-server --unsafe`.
- Adding AI to Airflow (_read-only access using Airflow Plugin_)
- This stream can enable Users to be able to get a better understanding about their deployment. Specially in cases where teams have hundreds, if not thousands of dags.
- Use command `airflow-mcp-server --safe`.