296 lines
8.5 KiB
Markdown
296 lines
8.5 KiB
Markdown
# Dolphin MCP Implementation Plan
|
|
|
|
## Overview
|
|
This document outlines the plan for integrating Dolphin MCP into the existing Streamlit chat application. The integration will enable the chat app to use MCP tools with OpenAI models.
|
|
|
|
## 1. Configuration Setup
|
|
|
|
### Enhanced config.ini Structure
|
|
We'll expand the existing `[mcp]` section in `config.ini`:
|
|
|
|
```ini
|
|
[openai]
|
|
api_key = your_api_key
|
|
base_url = https://openrouter.ai/api/v1
|
|
model = deepseek/deepseek-chat-v3-0324
|
|
|
|
[mcp]
|
|
enabled = true
|
|
# Server configurations in INI format
|
|
server.example.command = uvx
|
|
server.example.args = mcp-server-example
|
|
server.example.env.API_KEY = your-api-key
|
|
```
|
|
|
|
### Configuration Parsing
|
|
The OpenAIClient will parse this into a format Dolphin MCP can use:
|
|
|
|
```python
|
|
def parse_mcp_config(self):
|
|
if not self.config.has_section('mcp'):
|
|
return None
|
|
|
|
mcp_config = {"mcpServers": {}, "models": []}
|
|
|
|
# Check if MCP is enabled
|
|
if not self.config['mcp'].getboolean('enabled', False):
|
|
return None
|
|
|
|
# Parse server configurations
|
|
for key in self.config['mcp']:
|
|
if key.startswith('server.') and '.' in key[7:]:
|
|
parts = key.split('.')
|
|
server_name = parts[1]
|
|
config_key = '.'.join(parts[2:])
|
|
|
|
if server_name not in mcp_config["mcpServers"]:
|
|
mcp_config["mcpServers"][server_name] = {
|
|
"command": "",
|
|
"args": [],
|
|
"env": {}
|
|
}
|
|
|
|
if config_key == 'command':
|
|
mcp_config["mcpServers"][server_name]["command"] = self.config['mcp'][key]
|
|
elif config_key == 'args':
|
|
mcp_config["mcpServers"][server_name]["args"] = self.config['mcp'][key].split()
|
|
elif config_key.startswith('env.'):
|
|
env_key = config_key[4:]
|
|
mcp_config["mcpServers"][server_name]["env"][env_key] = self.config['mcp'][key]
|
|
|
|
# Add model configuration from existing OpenAI settings
|
|
model_config = {
|
|
"model": self.config['openai']['model'],
|
|
"provider": "openai",
|
|
"apiKey": self.config['openai']['api_key'],
|
|
"apiBase": self.config['openai']['base_url"],
|
|
"systemMessage": "You are a helpful assistant that can use tools."
|
|
}
|
|
mcp_config["models"].append(model_config)
|
|
|
|
return mcp_config
|
|
```
|
|
|
|
## 2. Code Changes
|
|
|
|
### OpenAIClient Modifications
|
|
1. Import Dolphin MCP components:
|
|
```python
|
|
from dolphin_mcp import run_interaction
|
|
```
|
|
|
|
2. Update initialization to include MCP:
|
|
```python
|
|
def __init__(self):
|
|
# Existing OpenAI client setup
|
|
self.tools = [] # Will store available MCP tools
|
|
# No need to create MCPClient directly
|
|
# run_interaction will handle provider selection
|
|
```
|
|
|
|
3. Update get_chat_response to use MCP tools:
|
|
```python
|
|
async def get_chat_response(self, messages):
|
|
mcp_config = self.parse_mcp_config()
|
|
|
|
if not mcp_config:
|
|
# Fall back to standard OpenAI if MCP not enabled
|
|
return self.client.chat.completions.create(
|
|
model=self.config['openai']['model'],
|
|
messages=messages,
|
|
stream=True
|
|
)
|
|
|
|
# Use Dolphin MCP with our parsed config
|
|
return run_interaction(
|
|
user_query=messages[-1]["content"],
|
|
model_name=self.config['openai']['model'],
|
|
config=mcp_config, # Pass the config dict directly
|
|
stream=True
|
|
)
|
|
```
|
|
|
|
## 3. Server Management with Synchronous Wrapper
|
|
|
|
To properly manage MCP servers in a Streamlit context, we'll implement a synchronous wrapper:
|
|
|
|
```python
|
|
import asyncio
|
|
import threading
|
|
from dolphin_mcp import MCPClient, run_interaction
|
|
|
|
class SyncMCPManager:
|
|
"""Synchronous wrapper for MCP server management"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.servers = {}
|
|
self.initialized = False
|
|
self._lock = threading.Lock()
|
|
|
|
def initialize(self):
|
|
"""Initialize and start all MCP servers synchronously"""
|
|
if self.initialized:
|
|
return True
|
|
|
|
with self._lock:
|
|
if self.initialized: # Double-check after acquiring lock
|
|
return True
|
|
|
|
if not self.config or "mcpServers" not in self.config:
|
|
return False
|
|
|
|
# Run the async initialization in a synchronous wrapper
|
|
loop = asyncio.new_event_loop()
|
|
success = loop.run_until_complete(self._async_initialize())
|
|
loop.close()
|
|
|
|
self.initialized = success
|
|
return success
|
|
|
|
async def _async_initialize(self):
|
|
"""Async implementation of server initialization"""
|
|
success = True
|
|
for server_name, server_config in self.config["mcpServers"].items():
|
|
client = MCPClient(
|
|
server_name=server_name,
|
|
command=server_config.get("command"),
|
|
args=server_config.get("args", []),
|
|
env=server_config.get("env", {})
|
|
)
|
|
|
|
ok = await client.start()
|
|
if ok:
|
|
# Get available tools
|
|
tools = await client.list_tools()
|
|
self.servers[server_name] = {
|
|
"client": client,
|
|
"tools": tools
|
|
}
|
|
else:
|
|
success = False
|
|
print(f"Failed to start MCP server: {server_name}")
|
|
|
|
return success
|
|
|
|
def shutdown(self):
|
|
"""Shut down all MCP servers synchronously"""
|
|
if not self.initialized:
|
|
return
|
|
|
|
with self._lock:
|
|
if not self.initialized:
|
|
return
|
|
|
|
loop = asyncio.new_event_loop()
|
|
loop.run_until_complete(self._async_shutdown())
|
|
loop.close()
|
|
|
|
self.servers = {}
|
|
self.initialized = False
|
|
|
|
async def _async_shutdown(self):
|
|
"""Async implementation of server shutdown"""
|
|
for server_info in self.servers.values():
|
|
await server_info["client"].stop()
|
|
|
|
def process_query(self, query, model_name=None):
|
|
"""Process a query using MCP tools synchronously"""
|
|
if not self.initialized:
|
|
self.initialize()
|
|
|
|
if not self.initialized:
|
|
return {"error": "Failed to initialize MCP servers"}
|
|
|
|
loop = asyncio.new_event_loop()
|
|
result = loop.run_until_complete(self._async_process_query(query, model_name))
|
|
loop.close()
|
|
|
|
return result
|
|
|
|
async def _async_process_query(self, query, model_name=None):
|
|
"""Async implementation of query processing"""
|
|
return await run_interaction(
|
|
user_query=query,
|
|
model_name=model_name,
|
|
config=self.config,
|
|
stream=False
|
|
)
|
|
```
|
|
|
|
### Streamlit Integration Example
|
|
|
|
```python
|
|
# In app.py
|
|
import streamlit as st
|
|
from openai_client import OpenAIClient
|
|
from mcp_manager import SyncMCPManager
|
|
|
|
# Initialize on app startup
|
|
@st.cache_resource
|
|
def get_mcp_manager():
|
|
client = OpenAIClient()
|
|
mcp_config = client.parse_mcp_config()
|
|
if mcp_config:
|
|
manager = SyncMCPManager(mcp_config)
|
|
manager.initialize() # Start servers immediately
|
|
return manager
|
|
return None
|
|
|
|
# Get or initialize the MCP manager
|
|
mcp_manager = get_mcp_manager()
|
|
|
|
# Clean up when the app is killed
|
|
import atexit
|
|
if mcp_manager:
|
|
atexit.register(mcp_manager.shutdown)
|
|
|
|
def handle_user_input():
|
|
if prompt := st.chat_input("Type your message..."):
|
|
if mcp_manager and mcp_manager.initialized:
|
|
response = mcp_manager.process_query(
|
|
prompt,
|
|
model_name=client.config['openai']['model']
|
|
)
|
|
# Handle response...
|
|
```
|
|
|
|
## 4. Streamlit App Updates
|
|
|
|
1. Add tool usage indicators to the UI
|
|
2. Handle streaming responses with tool calls
|
|
3. Add error handling for MCP operations
|
|
|
|
## 4. Testing Strategy
|
|
|
|
### Phase 1: Basic Integration
|
|
- Verify MCP client initialization
|
|
- Test tool discovery
|
|
- Simple tool calls
|
|
|
|
### Phase 2: Full Integration
|
|
- End-to-end testing with real queries
|
|
- Error scenario testing
|
|
- Performance testing
|
|
|
|
## 5. Future Enhancements
|
|
|
|
1. Tool discovery UI
|
|
2. Tool configuration interface
|
|
3. Multiple MCP server support
|
|
4. Advanced error recovery
|
|
|
|
## Implementation Timeline
|
|
|
|
1. **Week 1**: Basic integration and testing
|
|
2. **Week 2**: Full UI integration
|
|
3. **Week 3**: Comprehensive testing
|
|
4. **Week 4**: Deployment and monitoring
|
|
|
|
## Potential Challenges
|
|
|
|
1. **Tool Compatibility**: Ensuring tools work with OpenAI's function calling
|
|
2. **Error Handling**: Robust error recovery when tools fail
|
|
3. **Performance**: Minimizing latency from tool calls
|
|
4. **Security**: Properly handling sensitive data in tool calls
|